
Adaptive Multilinear Tensor Product Wavelets

Kenneth Weiss, Member, IEEE, and Peter Lindstrom, Senior Member, IEEE

Abstract—Many foundational visualization techniques including isosurfacing, direct volume rendering and texture mapping rely on
piecewise multilinear interpolation over the cells of a mesh. However, there has not been much focus within the visualization community
on techniques that efficiently generate and encode globally continuous functions defined by the union of multilinear cells. Wavelets
provide a rich context for analyzing and processing complicated datasets. In this paper, we exploit adaptive regular refinement
as a means of representing and evaluating functions described by a subset of their nonzero wavelet coefficients. We analyze the
dependencies involved in the wavelet transform and describe how to generate and represent the coarsest adaptive mesh with nodal
function values such that the inverse wavelet transform is exactly reproduced via simple interpolation (subdivision) over the mesh
elements. This allows for an adaptive, sparse representation of the function with on-demand evaluation at any point in the domain. We
focus on the popular wavelets formed by tensor products of linear B-splines, resulting in an adaptive, nonconforming but crack-free
quadtree (2D) or octree (3D) mesh that allows reproducing globally continuous functions via multilinear interpolation over its cells.

Index Terms—Multilinear interpolation, adaptive wavelets, multiresolution models, octrees, continuous reconstruction.

1 INTRODUCTION

Multilinear interpolants are at the foundation of many key visualization
techniques, including isosurfacing [10,27,31], direct volume rendering
(DVR) [1] and texture mapping [21], which assume piecewise mul-
tilinear interpolants over a mesh’s quadrilateral or hexahedral cells.
However, despite their importance, there has not been much focus
within the visualization community on techniques that efficiently gen-
erate and encode globally continuous (C0) functions defined by the
union of multilinear cells. Although this is straightforward for uni-
form meshes, it becomes more difficult on adaptive meshes generated
by subsets of a regular grid, e.g. on meshes generated by quadtrees,
octrees and kd-trees, which are becoming more common as the gulf
between processing power and memory widens. Thus, we require well
grounded approaches that efficiently incorporate adaptivity in domain
and function space.

Wavelets provide a natural framework for such approaches and ten-
sor product wavelets based on quadtrees and octrees have a rich his-
tory [34, 40]. When derived from linear B-spline wavelets, they corre-
spond to piecewise multilinear functions. To ensure continuity between
grid cells of different resolution, such meshes are typically triangulated
and the underlying multilinear function is approximated via linear in-
terpolation on each triangle (2D) or tetrahedron (3D) [4, 20, 33, 47].
This increases the complexity of the mesh, and, more importantly, in-
troduces directional biases into the mesh [8] and error in the function
approximation. We present a novel approach that retains the piecewise
multilinear nature of the function over an adaptive quadtree or octree
of minimal size while enforcing C0 continuity.

Despite the popularity of wavelet-based techniques for simplifying
volumes, images and shapes, most of the techniques in the literature
have approached the problem from the perspective of reducing the stor-
age for encoding or transmission, e.g. via quantizing and thresholding
the wavelet coefficients. Considerably less effort has gone into the
development of data structures and evaluation techniques for represent-
ing and processing the function in a way that exploits its sparseness
in the wavelet basis. Such sparseness may arise because the function
is intrinsically smooth with few fine-scale details, or is approximated
by discarding wavelets with small coefficients or with support outside
a region of interest. In this case the function can be represented on a
coarser, adaptively refined domain and later recovered exactly at full

• K. Weiss and P. Lindstrom are with Lawrence Livermore National
Laboratory. E-mail: {kweiss,pl}@llnl.gov.

Manuscript received 31 Mar. 2015; accepted 1 Aug. 2015; date of publication
xx Aug. 2015; date of current version 25 Oct. 2015.
For information on obtaining reprints of this article, please send
e-mail to: tvcg@computer.org.

resolution on demand using the subdivision scheme associated with the
wavelet scaling function. Such an adaptive representation is not only
memory efficient, but can also be used to accelerate visualization tasks
like ray casting by spatially varying the grid resolution.

In this paper, we introduce a framework for lifted, separable wavelet
transforms over regular grids, in which we pay attention to the run-
time representation of the adaptively refined domain. In particular,
we discuss how to reconstruct, interpolate and visualize such adap-
tive functions through the use of a meshing scheme that organizes the
wavelets into binary trees (1D), quadtrees (2D), and octrees (3D). Our
results should be seen as complementary to the broad spectrum of work
on offline encoding of wavelet coefficients [34, 36].

We derive adaptivity from the dependency relations among the ten-
sor product wavelet lifting steps and mesh refinements. After reviewing
lifting in the uniform case (Section 3), we formally analyze the depen-
dency relations required for adaptive wavelet transforms (Section 4).

The main contributions of this work are:

• A unified framework for adaptive meshing of functions defined
by an arbitrary subset of wavelet coefficients from a regular grid.
Although this framework is general and applicable to wavelets
with parametric synthesis scaling functions [39], in this paper, we
focus on the popular linear B-spline tensor product wavelets [40]
useful for visualization. We present simple rules for constructing
the coarsest mesh that allows exact reproduction of the associ-
ated function. We treat both interpolating wavelets (i.e. those
with just prediction) and approximating wavelets (i.e. those with
prediction and updates) in a consistent manner.

• We show that the mesh can be further coarsened by replacing
the multilinear interpolant with spectral interpolation [23]. Fur-
thermore, we use this interpolant to highlight the correspondence
between simple subsampling and interpolating linear B-spline
wavelets, leading to a simplified subsampling strategy.

• Given an adaptive mesh defined by a subset of wavelet coeffi-
cients, we propose an efficient means of improving its approxi-
mation quality at no additional storage or reconstruction cost by
saturating the mesh with all wavelets whose support are already
present in the mesh.

• We describe a simple pointerless representation for quadtrees and
octrees defined by scalar values at the vertices. Specifically, we
only encode the vertices of the mesh, and can implicitly retrieve
its cells, as well as its hierarchical and geometric relationships.

Our approach can be thought of as generalizing the ubiquitous inter-
polating linear wavelets defined on simplices within adaptive binary
trees [15, 18, 49] to multilinear C0 interpolating and approximating
wavelets on adaptive quadtrees and octrees.

2 BACKGROUND AND RELATED WORK

Multiresolution analysis has a rich history in the signal process-
ing, computer graphics and CAD communities dating back several
decades [28, 40]. The lifting scheme, which can be defined for any
wavelet filter [13], was introduced by Sweldens [41] for biorthogonal
wavelets, where the possibility of using an adaptive domain is hinted.
Note that the term adaptive in the wavelet literature is often used in
the context of data dependent wavelet transforms, where one can adapt
the wavelet basis functions themselves to fit the data [11, 51]. While
such an approach can fit within our framework, in this paper, we use
the term to refer to adaptivity in the domain decomposition.

There are several similar approaches within the PDE community to
adaptive grids [5, 9, 14, 29], most of which are similar to block-based
AMR, in which a series of nested grids cover the region of interest.
In [22], a set of samples with high wavelet magnitudes are retained
which are used to interpolate missing samples. In this paper, we in-
troduce a framework for reconstructing the smallest mesh to satisfy
both interpolating and approximating wavelets. We therefore focus on
efficient data structures to encode and reconstruct the sparse function.

Perhaps the most closely related work to ours is the adaptive ap-
proach of Linsen et al. [25], which derives an adaptive tetrahedral mesh
from their progressive n

√
2 scheme [26] (based on the lifting approach

of Bertram et al. [6]). Similar to other approaches [20,33,47], once the
function is reconstructed, it is approximated in terms of the piecewise
linear tetrahedra, rather than as a multilinear function. Specifically,
they extract isosurfaces using Marching Tetrahedra [32] over the sim-
plices. In contrast, our exact evaluation uses the underlying multilinear
interpolant given by the wavelet basis. As we demonstrate in Sec-
tion 6.5 for natural, scanned and simulation datasets, this can improve
the fidelity of our approximation by several decibels on meshes defined
by the same set of vertices.

Furthermore, our scheme is designed to include the full support of
every included wavelet in our adaptive representation. This does not
appear to be the case in [25], whose adaptive meshes are defined only
by the dependencies induced by conforming simplex bisections, which
do not generally include the entire support of the wavelets. We intend
to examine this issue more fully in a forthcoming paper.

Another related approach is CHARMS [19], which uses the two-
scale relation of arbitrary nested basis functions to simplify adaptivity
in Finite Element spaces. This is similar to our ‘Full internal’ stencil in
Section 5.2.2. We reduce the storage requirements through the use of
the lifting scheme and through our supercube encoding (see Section 5).

There has been a lot of work in using multiresolution and adaptive
grids for processing scalar functions defined over regular grids. A d-
dimensional octree is a hierarchical domain decomposition based on
the regular refinement of cubes. To simplify our discussion throughout
this paper, we use the terms octree and cubes to generically refer to
d-dimensional octrees defined by d-cubes, where d is the dimension of
the domain, and we specify the dimension only when necessary.

Under regular refinement, a d-cube C is replaced by 2d similar d-
cubes. This operation defines a nested containment hierarchy in which
the 2d cells created during the regular refinement of a d-cube C are its
children, and C is their parent. The vertices of the children are defined
by the midpoints of the parent cube’s faces (e.g. edges, facets), and
each child contains one of the vertices of C as well as its midpoint.

The octree’s root covers the entire domain. Cubes that are not re-
fined have no children and are referred to as leaf cells of the octree. The
level of a cube C in an octree T is the number of refinements necessary
to obtain C from T ’s root. In a uniform octree, all leaf cells are at the
same level, otherwise, the octree is adaptive. A balanced octree is one
in which neighboring cells differ by at most one level. Specifically, an
octree is edge-balanced if each edge in the octree is on the boundary
of d-cubes from at most two consecutive levels.

Consider the regular cubical mesh defined by a uniform octree T .
We refer to the i-dimensional faces of T as primal cubes, and to the axis-
aligned (d− i)-cubes defined by connecting the centers of its adjacent
d-cubes as dual cubes. Figure 1 illustrates a 1-cube (edge) in 3D and
its dual 2-cube.

Fig. 1. An edge (black) and its dual 2-cube (red) in a hexahedral mesh.

Most octree representations have focused on encoding data with
the leaves of the tree [35], which is sufficient when the data is cell-
centered. However, when the data is associated with the vertices of
the mesh, this can lead to a redundant encoding of the vertex data.
Our representation utilizes a pointerless supercube representation [46]
originally proposed for diamond hierarchies [49]. The encoding of the
vertex data can be seen as a non-redundant tile-based representation of
the vertex data (similar to [2,17], among others). An interesting aspect
of this representation is that leaf cells can be determined implicitly
from the set of encoded vertices, and, thus, do not need to be encoded.

Applications such as surface extraction and ray tracing typically
require a function with at least C0 continuity (i.e. crack-free). How-
ever, adaptive octree meshes are not conforming. There are several ap-
proaches to achieve continuity from an adaptive octree mesh, including
explicitly patching cracks in the extracted surface [38], modifying the
field values at the vertices [30], or making the primal [4, 20, 35, 47] or
dual [16,44] domain conforming using noncubical cells. Although this
is typically implemented by triangulating the lower resolution neigh-
bors on a balanced octree, we exploit the fact that under a multilinear
interpolant the function varies linearly along the edges of the mesh
cubes. Thus, by locally refining some edges using linear interpolation
of their midpoints, we obtain a piecewise multilinear C0 interpolant
over cubical cells despite the presence of T-junctions.

3 LIFTING FOR UNIFORM TENSOR PRODUCT WAVELETS

In this section, we anticipate the discussion of adaptively refined tensor
product wavelets by first discussing the uniform case. We assume our
domain is a d-dimensional uniform grid G of resolution (2L +1)d .

The lifting scheme is a means of factoring wavelet transforms into
simpler elementary operators. The forward lifting transform (wavelet
analysis) consists of three steps. It first splits the vertices V into two
sets Vw and Vs. Vw is associated with wavelets at the current level
of resolution, whereas the remaining set Vs is associated with scaling
functions. A w-lift generates wavelet coefficients for the vertices Vw.
Each coefficient is the residual of a prediction P formed by a weighted
sum of function values at neighboring vertices from the set Vs. An s-lift
update is then optionally applied to the vertices Vs as a weighted sum
U of neighboring wavelet coefficients. This step exists to ensure that
the mean and possibly higher order moments are preserved in the lower
resolution signal represented by Vs. Multiple resolutions are obtained
by recursively applying this transform to the remaining vertices Vs.
The inverse lifting transform (wavelet synthesis) is trivially defined by
reversing this sequence of steps.

When applied to a mesh, lifting can be understood in the context of
regular refinement, where the splitting phase modifies the connectivity
of the mesh, while the s-lift and w-lift phases modify attributes asso-
ciated with the mesh (e.g. scalar values). Consider a regularly refined
binary tree T , i.e., a uniform 1D octree, whose edges are cells at level `
defined over a regular grid containing 2`+1 vertices. Then the inverse
transform uniformly refines T to level `+1 by inserting a new vertex
at the midpoint of each edge of T , converting T to a uniform octree at
level `+1. The inverse s-lift and w-lift stages modify the values of T ’s
vertices (nodes) as well as the newly inserted midpoints, respectively.

0
1
2

1

0

0

0 0

0

0
1

2
1

0

(a) Scaling function φxφy

0
-1
-2

6

-2

-1

0 0

0

0
1

2
1

0

(b) Edge wavelet φxψ̃y

0
-1
-2

6

-2

-1

0 0

-1

-2
6

-2
-1

0

(c) Square wavelet ψ̃xψ̃y

0
0
0

1

0

0

0 0

0

0
1

2
1

0

(d) Edge wavelet φxψ̄y

0
0
0

1

0

0

0 0

0

0
1

0
0

0

-

(e) Square wavelet ψ̄xψ̄y

Fig. 2. 2D basis functions for approximating (b, c) and interpolating (d, e) bilinear B-spline wavelets. With respect to the embedding 3×3 grid (bold),
scaling functions (a) are associated with vertices, while wavelets are associated with edges (b, d) and squares (c, e).

3.1 Interpolating and approximating 1D wavelets
We consider two simple lifted wavelet transforms. Interpolating
wavelets use only a prediction step (w-lift), leaving the function values
at Vs unchanged from one level to the next. Approximating wavelets
have both a prediction (w-lift) and an update (s-lift) step. Thus, interpo-
lating wavelets have simpler computational requirements and smaller
support while approximating wavelets can better preserve properties
of the function (such as its mean).

To make this more concrete, consider the biorthogonal linear B-
spline wavelets [12,40] defined on a uniform 1D grid, where all vertices
are connected to their adjacent vertices via an edge. In the w-lift, we
predict the value of each odd vertex v2i+1 ∈ Vw as the average of its
two even neighbors: P(v2i+1) =

1
2 [f (v2i)+ f (v2i+2)]. In the s-lift, we

update the values of the even vertices Vs by adding to them U(v2i) =
1
4
[

f̂ (v2i−1)+ f̂ (v2i+1)
]
, where f̂ (v) = f (v)−P(v) denotes a wavelet

coefficient resulting from the forward w-lift. This lifting scheme results
in corresponding stencils for the approximating synthesis wavelet ψ̃ =
1
8 [0,−1,−2,6,−2,−1,0] and interpolating wavelet ψ̄ = [0,1,0]. Both
transforms have φ = 1

2 [0,1,2,1,0] as their scaling functions, implying
a piecewise linear subdivision in 1D.

3.2 Tensor product wavelets
The 1D lifting scheme described above can be easily generalized to
higher dimensions using a separable tensor product of 1D wavelets [40].
In this approach, we cyclically apply the 1D scheme to the axis aligned
samples along each individual dimension, leading to a tensor product
of i wavelets ψ and (d− i) scaling functions φ .

The correspondence between lifted wavelets and regular refinement
in 1D can be generalized to tensor product wavelets. Specifically, a
basis function defined by the tensor product of i wavelets ψ and (d− i)
scaling functions φ is associated with the midpoint of an i-cube in the
d-dimensional grid (which is also the midpoint of a dual (d− i)-cube;
see Figure 1). Thus, in 2D, the tensor product scaling functions φxφy
are associated with the vertices of the grid, while the wavelets φxψy
and ψxφy are associated with the midpoints of edges, and the wavelets
ψxψy are associated with midpoints of the square cells. Since the
scaling functions for linear B-spline wavelets correspond to linear inter-
polation, their tensor product corresponds to multilinear interpolation,
namely, bilinear interpolation in 2D and trilinear interpolation in 3D.

Figure 2 shows the scaling function and two types of interpolating
and approximating linear B-spline tensor product wavelets, along with
their support on a refined 3× 3 grid. Because the scaling function is
piecewise bilinear, the wavelets correspond to a set of bilinear patches
at the finer level or resolution (this is referred to as the two-scale rela-
tion [28, 40]). Note also that the stencils (i.e. the values at the vertices
of the refined 3× 3 grid) are defined by the tensor product of the 1D
stencils (see Section 3.1).

3.3 Filtered wavelet coefficients
A typical workflow for using the wavelet transform consists of trans-
forming the function into the wavelet domain, analyzing and modifying
the function in the wavelet domain, and finally converting the modified
function back to the spatial domain. During the analysis phase, the
coefficients are often filtered or quantized in an application dependent
way, e.g. to remove noisy details, or for efficient storage and trans-
mission. These filters can be based on properties of the wavelet, such

as its coefficient’s magnitude or the range of isovalues in its support.
Hierarchical (e.g. refinement level) and spatial information can also be
used, e.g. for region of interest (ROI) queries.

Although the function has been simplified, the domain is the same,
and, thus, requires the same amount of processing and storage at run-
time. In the following section, we propose a refinement strategy that
adapts the underlying complexity of the reconstructed function.

4 ADAPTIVE TENSOR PRODUCT WAVELETS

Our adaptive refinement scheme is applicable to tensor product
wavelets whose scaling functions can be directly evaluated from a
stencil (as in [39]). We utilize a regularly refined octree to organize our
adaptive mesh. For each wavelet coefficient that we wish to include in
our function, we ensure that its corresponding wavelet can be fully re-
constructed in the resulting mesh. After running our (adaptive) inverse
lifting transform, we use the wavelet scheme’s interpolant to evaluate
the function at any point in the domain. Thus, our results exactly
match that of the function on the full domain when reconstructed from
the same set of wavelet coefficients. For linear B-spline tensor prod-
uct wavelets, the associated interpolant is multilinear and smooth over
each cell of the octree, and is C0 continuous across cell boundaries.

4.1 Reduced neighborhoods for wavelet support

As mentioned above, a common reconstruction strategy is to either
use the entire full-resolution domain to reconstruct the function from
a subset of the wavelets [28, 40], or to use a set of (sufficiently large)
nested uniform grids surrounding each wavelet, as is typical in the
AMR community [5, 14]. Our goal is to extract the coarsest mesh that
faithfully reconstructs a given (arbitrary) set of wavelets. We achieve
this by exploiting properties of regular refinement, of our interpolant,
and of the stencil’s coefficients to reduce the number of vertices (and
cells) required to reconstruct each wavelet.

Recall that the two-scale relationship implies that wavelets and scal-
ing functions at level ` are defined as linear combinations of scaling
functions at level `+ 1. Thus, we can exactly reconstruct a given
wavelet ψ if our mesh includes all vertices at level `+ 1 associated
with the scaling functions defining its two-scale relationship. For tensor
product wavelets, these vertices lie within a rectilinear d-dimensional
stencil of coefficients surrounding the wavelet’s associated vertex, and
the stencil values are determined by the tensor product of its 1D sten-
cils, as described in Section 3. For linear B-splines, these stencils cover
five, three and seven grid points at level `+1 for scaling function φ , in-
terpolating wavelet ψ̄ and approximating wavelet ψ̃ , respectively. For
example, the 2D approximating wavelet ψ̃xψ̃y over a square cell (see
Figure 2c) is defined as the weighted sum of the 7× 7 = 49 scaling
functions within its stencil, and a wavelet ψ̃xψ̃yψ̃z over a cubic cell is
defined by 73 = 343 scaling functions. Our discussion below exam-
ines these scaling functions in terms of the set of grid points at level `,
which comprise the vertices bounding the cells in the support of each
wavelet, and those at level `+ 1 bounding their refined cells. In all
cases, we require the full set of grid points from the former group but
not necessarily all grid points from the latter group. For (1D) linear B-
splines, the support of the scaling function φ covers two cells at level
` defined by three level-` grid points, while ψ̄ and ψ̃ have supports
covering one and three level-` cells, respectively.

4.1.1 Full internal stencil support
We first observe that the boundaries of the stencils have a layer of zeros,
and that these are all aligned with the boundaries of cubic cells from
level `. Since the values of grid points at level `+ 1 (i.e. the faces
of the cubic cells) can be trivially interpolated from their zero-valued
boundary vertices, we can safely omit them.

Note that for interpolating linear B-spline wavelets ψ̄ , all that re-
mains is an inner subgrid centered around ψ̄ , with three grid points
along directions defined by scaling functions, and one grid point along
wavelet directions. Each such stencil point corresponds to a face of
ψ̄’s corresponding dual cube (see Figure 3a).

In our running example, eliminating the boundary grid points re-
duces the samples required for reconstructing ψ̃xψ̃y to 37 (i.e. we have
removed the twelve edge midpoints on the boundary of its support).

4.1.2 Exploiting properties of the scaling function
Although the previous step reduces the required support of each
wavelet, it still includes many vertices whose values can be recov-
ered from our wavelet interpolant. We can exploit properties of our
interpolant to remove stencil vertices whose values can be interpolated
directly from other samples (e.g. from the vertices of level-` cubes).
Specifically, for the 1D linear B-spline wavelet ψ̃ , the collinearity of
[0,−1,−2] in the approximating wavelet stencil allows us to exclude
filter weight -1 as it is the linear average of 0 and -2. This allows the
wavelet to be represented using cells of varying resolution.

In fact, we can decompose ψ̃ into the sum of two scaling functions
φ associated with the internal cell vertices of its stencil and a single in-
terpolating wavelet ψ̄ associated with the midpoint of its internal edge.
This analysis can be extended to approximating multilinear B-spline
wavelets. Let ψ be a wavelet associated with a k-cube C in the mesh
(i.e. it is located at the midpoint of C , where k ≤ d). Then ψ can be
decomposed into 2k scaling functions associated with the vertices of
C and into the sum of interpolating tensor product wavelets associated
with each remaining face of C . For example, the 2D approximating
square wavelet associated with the midpoint of the center square of the
grid (Figure 2c) can be decomposed into four scaling functions asso-
ciated with its vertices, four interpolating edge wavelets and a single
interpolating square wavelet. The advantage of this decomposition is
that we only need to include the stencil points associated with the five
interpolating wavelets. In our running example, this reduces the num-
ber of samples required for reconstructing ψ̃xψ̃y to 25, i.e. the sixteen
grid points at level `, the midpoints of the four edges of the center
square and the midpoints of their five incident squares at level `+1.

4.1.3 Using higher order predictors
We can further reduce the overhead of each wavelet’s stencil by incor-
porating a higher order predictor into our reconstruction scheme.

In the case of lifted interpolating linear B-spline wavelets it can be
shown that the underlying predictor at the midpoint of a k-cube C is not
given by a multilinear average of its corners, but rather by the “radial”
spectral predictor [23] on the 3k stencil that incorporates all faces of C .
This predictor is given by the weighted average of 3k−1 points:

P =−
k

∑
j=1

(
−1

2

) j
∑

i
f (vk− j

i)

where vk− j
i denotes the ith vertex of the (k− j)-cube centers of the

faces of C . Our interpolating wavelet predictor is equivalent to apply-
ing this predictor successively to edges, facets, and cubes, using any
known values and spectrally predicting unknown values. It is easy to
verify that when all vertices other than cube corners are multilinearly
interpolated, P reduces to multilinear interpolation. Furthermore, since
radial interpolation only changes the values at the midpoints of a cube’s
faces, each such patch can be seen as a set of multilinear patches at
the next level of resolution. Applying the spectral radial predictor to
a multilinear B-spline wavelet reduces the required stencil to just the
grid points at level ` and the faces of primal cube C associated with the
wavelet. Concluding our running example, a radially predicted ψ̃xψ̃y

requires only 21 grid points (i.e. the 16 grid points at level `, and the
center and four edge midpoints on the internal square).

A note about radial prediction for approximating wavelets: Radial
prediction works as described for interpolating wavelets, and for ap-
proximating wavelets that do not have additional internal stencil grid
points. However, due our implementation using a separable lifting
transform, radial prediction can potentially introduce some interpola-
tion errors when only a subset of the internal stencil grid points are
present, as some s-lift updates might not reach these vertices if the
vertices required by the lifting scheme are missing. As a compromise,
in our current implementation (which cyclically lifts along the x, then
y, then z axes), we conservatively retain all stencil grid points that lie
in the same x-plane as the wavelet (in 2D) or in the same xy-plane (in
3D), as this guarantees the stencils of s-lift updates to all vertices. An
alternative data-dependent approach, which we leave for future work,
might be to further analyze lifting scheme’s dependencies and only add
the vertices that are necessary to correctly reconstruct the wavelet.

5 OCTREE REPRESENTATION AND FUNCTION EVALUATION

In this section, we discuss our pointerless nodal octree, and describe
how to insert wavelets using the various adaptive stencil supports dis-
cussed in Section 4.1 and how to evaluate the underlying field.

5.1 Representation

Our implicit octree structure encodes only the (adaptive subset of) ver-
tices and their associated scalar values. Because the distribution of
vertices in the mesh exhibits significant spatial coherence, we reduce
the overhead due to specifying vertex coordinates using an efficient
supercube representation [46], which clusters (up to) 4d −2d vertices
(12 vertices in 2D; 56 vertices in 3D). The vertices present in the adap-
tive octree mesh are indicated using one bit per vertex, resulting in a
per-supercube overhead of 7 bytes for the vertex flags and 6 bytes for
supercube coordinates in 3D. The nodal function values are stored in
tiles of size 4d − 2d and the sets of supercubes at each level of reso-
lution are stored in a hash map, providing random access to the mesh
vertices and their associated scalar values. The mapping from grid
vertices to supercubes involves only simple bit manipulations [46]. To
traverse the tree, we only need to check if the midpoint of the current
cube is present in the mesh, in which case the cube is not a leaf.

5.2 Wavelet stencil implementation

In Section 4.1, we described the characteristics of the different opti-
mized wavelet stencils for interpolating and approximating tensor prod-
uct B-spline wavelets. Here, we discuss how they can be efficiently
implemented within our (pointerless) d-dimensional octree data struc-
ture. Our wavelet stencils are implemented in terms of (a) iterators of
the faces of primal and dual cubes of a regular grid, and (b) standard
octree refinement. The former are all implicitly determined from the
coordinates of the input point p, corresponding to the center of a k-
dimensional (primal) cube and its (d− k)-dimensional dual cube [45].

For the latter, recall that every vertex in the domain uniquely corre-
sponds to a single k-cube in the octree, i.e. it is the center of a k-cube at
some level in the hierarchy. Assume we have an octree T , to which we
would like to add a wavelet ψ , whose support is centered at vertex p
on level ` of T . Our strategy is given in two conceptual steps, although
they can be implemented concurrently. First, we set up the proper
hierarchical context for ψ’s stencil by refining some octree blocks in
the neighborhood of p (see Section 5.2.1). This takes care of all the
octree refinement for the wavelet’s stencil up to level `, and is imple-
mented as a set of standard octree refinements OCTREEREFINE(C)
for a d-dimensional cube C . This function (recursively) checks that
OCTREEPARENT(C) is refined and then refines C . During the refine-
ment, we insert vertices at the midpoints of all faces of the refining
cube C . After this step, all other modifications can be done locally
without triggering additional octree refinements. Our second step is to
insert the set of vertices at level `+1 comprising the stencil’s internal
vertices (see Section 5.2.2).

(a) ψ̄ dependencies (b) ψ̃ dependencies (c) ψ̄ stencils (d) ψ̃ stencils (e) Supercube vertices

Fig. 3. Hierarchical dependencies (a, b), stencil vertices (c, d) and supercube encoding (e) for interpolating ψ̄ (a, c) and approximating ψ̃ (b, d) edge
wavelets (red) in a quadtree. (a, b) Wavelets depend on the octree parents (blue) of the vertices of a dual cube (green) of a single vertex from the
mesh (the wavelet itself in (a) and that of its upper endpoint in (b)). (c, d) Wavelet stencils require all vertices from the previous level of resolution
(black vertices) within the wavelet’s support (black edges, compare to Figure 2). Additional vertices are required for radial (red), multilinear (red and
green) and full internal (red, green and white). (e) Vertices associated with the supercubes [45] at the wavelet’s level of resolution.

5.2.1 Hierarchical dependencies

Since octree refinements apply to d-cubes, and our wavelet’s midpoint
is, in general, associated with a k-cube, we must first find a set of
d-cubes in its neighborhood whose refinement will give us the right
context. Recall from Section 2 that the vertices of the dual mesh cor-
respond to the d-cubes of the primal mesh. The specifics depend on
whether we are working with interpolating or approximating wavelets.

The support of an interpolating linear B-spline wavelet is entirely
within the primal d-cubes associated with its (d−k)-dimensional dual-
cube (Figure 3a). Thus, to create these cubes, we only need to apply
OCTREEREFINE to the OCTREEPARENT of the dual cube vertices.

In the approximating case, a similar trick works, but rather than
finding the dual cube associated with the wavelet’s primal cube, we
need to find the dual cubes associated with the vertices of its primal
cube. This follows from the observation that the support of the approx-
imating wavelets lie within a 3k2d−k grid of cubes at level `, where the
dimensions that are three cubes wide are tangent to its primal dimen-
sions (see Figures 2 and 3b). However, by considering the pattern of
nested octree refinement, we observe that the sets of cubes generated
by this process are nested. That is, the octree parents of one of the ver-
tex’s dual cubes is a superset of those of all the others, which we can
safely ignore. Specifically, we want the vertex of the primal cube that
is furthest from the midpoint of the supercube containing p (the vertex
at the upper endpoint of the wavelet’s edge in Figure 3b). This can
easily be calculated by a few bit manipulations on its coordinates [46].

In summary, for each wavelet ψ , we identify a single vertex v (either
its midpoint, in the case of interpolating wavelets, or one of its vertices,
in the case of approximating wavelets), and for each vertex v j of the
dual cube of v, we apply OCTREEREFINE(OCTREEPARENT(v j)).

5.2.2 Interior wavelet stencils

Given the proper octree context set up in the previous section, we can
now implement the specific stencil described in Section 4.1.
Full rectilinear stencil Here, we simply add to T all vertices in
the full subgrid of dimensions MkNd−k centered at p, which has M
grid points in dimensions that are primal and N in dimensions that are
dual. For approximating wavelets, M is 7 and N is 5; for interpolating
wavelets, the values are 3 and 5, respectively.
Full internal Since we already have the grid points at level `, we only
need to add those at level `+1. We can therefore use the same proce-
dure as in the above step, after setting M = 5, N = 3 for approximating,
and M = 1, N = 3 for interpolating.
Min multilinear For proper multilinear interpolation, we need to add
all face centers of the dual cube surrounding each edge of p’s primal
cube. We implement this through iterators on the primal cube edges,
which call iterators on the associate dual cube faces. For interpolating
wavelets, ‘Min multilinear’ and ‘Full internal’ are equivalent.
Min radial For the simplest radially interpolated stencil, we add the
midpoints of the faces of the primal cube. This is sufficient for the

interpolating wavelets where there are no data dependencies due to s-
lifts. For our approximating wavelets, we take a conservative approach
and add all vertices that can have potential data dependency conflicts.
Generally speaking, since we cyclically apply our lifting steps, this
includes the vertices added in the ‘Min multilinear’ step above that
have the same y-coordinate (2D) or z-coordinate (3D) as ψ’s midpoint.

5.3 Function evaluation
We have the option of either storing the wavelet coefficients or inverse-
transformed function values with the octree vertices. In the former
case, the lifted inverse transform is executed by traversing the octree
breadth-first level by level and applying standard 1D lifting operations
to transform the wavelet coefficients. Since each wavelet has the proper
stencil for lifting (see Section 4), we compute the same value at the
vertices of the mesh as we would in the uniform case.

To evaluate the function at a single point, we traverse the octree
from the root and follow the branch containing the point until we reach
a leaf cube. Given function values at the corners of this cube, we then
apply multilinear or radial interpolation, depending on our extracted
stencil. When we wish to evaluate the function over the entire domain,
e.g. to display an image, we simply visit all leaf cubes and use our
interpolant to compute the grid point values.

6 APPLICATIONS AND RESULTS

In this section, we discuss the utility and efficiency of our adaptive
approach against the simpler uniform case. We also compare several
applications of interpolating and approximating wavelets and consider
the benefits of using the underlying multilinear interpolant over the
adaptive cubical mesh rather than a linear interpolant over a triangu-
lated domain. Due to space considerations, we provide a comprehen-
sive analysis over a range of datasets in a supplementary appendix.

In the following, we denote approximating wavelets as a, and inter-
polating wavelets as i. We use superscripts to denote features of the
wavelets (adaptivity, normalization and saturation, as defined below),
and subscripts to denote the interpolation and choice of stencil. Thus,
aU

m denotes a mesh reconstructed using an approximating wavelet and
multilinear (m) interpolation at uniform resolution (U). We compare
the fidelity of the reconstruction in terms of the logarithmically scaled
Peak Signal to Noise Ratio (PSNR) [43].

6.1 Uniform meshes and progressive refinement
Our approach allows us to build a mesh by selecting any subset of the
wavelets in the domain, so a natural first step is to filter the wavelets by
hierarchy depth. The uniform lifting scheme applied to tensor product
wavelets enables a straightforward progressive level of detail (LOD)
extraction on a reduced domain at the granularity of one mesh per level
of resolution. That is, we can reconstruct the mesh on a uniform octree
of maximum level `≤ L by applying a full cycle of lifting steps.

Our approach enables selection of all wavelets at sublevel granular-
ity (which we refer to as depths). Thus, we can select all wavelets up

(a) aU
m

(17M,17M,316K)
Full resolution (b) aI

m
(5K,64K,3.6K)

PSNR:24.5 (c) aII
m

(45K,64K,3.6K)
PSNR:34.0 (d) aI,n

m
(5K,21K,1.2K)

PSNR:35.4 (e) aII,n
m

(14K,21K,1.2K)
PSNR:35.9

Fig. 4. Interval volume renderings comparing wavelet saturation and normalization in adaptive meshes approximating the Tooth dataset (a) from
its highest 0.03% wavelet coefficients. The unnormalized, unsaturated mesh (b) uses a significant portion of its vertex budget on high resolution
noise (not pictured), and fails to capture the shape of the tooth. Its saturated counterpart (c) successfully captures the shape, while both normalized
meshes (unsaturated (d) and saturated (e)) achieve better approximations using a considerably smaller mesh. The numbers in the subcaptions
indicate the number of wavelet coefficients, vertices and supercubes in the extracted mesh, as well its Peak Signal to Noise Ratio (PSNR).

to level `, and then also add all the level-` edge wavelets, followed by
all the square wavelets (followed by the cube wavelets in 3D).

Note that the tensor product dependencies imply that we insert the
depths in order of increasing dimensions (i.e. edges, then squares,
then cubes, ...), while in the RSB-based n

√
(2) scheme of Linsen et

al. [26], the depths are inserted in the reverse order (i.e. cube centers
followed by square centers and then edge centers). We have observed
that most of the power within each level of resolution lies within the
edge wavelets (see the dotted lines in Figure 9, where adding the edge-
centered wavelets significantly impacts the PSNR, but adding the face-
centered and cube-centered wavelets has much less impact).

An interesting result derived from our study on adaptive stencils
(Section 4.1) is that, while we are free to select the wavelets associated
with the edges of the mesh, giving us depth-based adaptivity in the
function space, this does not give us any additional adaptivity in the
corresponding mesh. That is, once we incorporate the edge wavelets at
level `, our stencil completion algorithm (Section 5.2) will add all other
vertices at level `, which are required by the adaptive lifting algorithm.

6.2 Wavelet magnitude thresholding
The next natural step is to use a predicate based on wavelet magnitude
to filter the wavelets composing our approximated function.

Normalization. To minimize the approximation error for a given
wavelet coefficient budget, the coefficients { f̂} may be selected by
magnitude. However, the level of resolution and centering on edges,
facets, and cubes of each wavelet basis function dictate its norm ‖ψ‖,
and hence influence the mean square error. For orthogonal wavelets,
each excluded wavelet incurs an error of f̂ 2‖ψ‖2, suggesting that we
should select wavelets in order of decreasing ‖ f̂ ψ‖ (equivalent to nor-
malizing the basis functions). Contrary to earlier work [20], we found
that such normalization can have a significant impact on the quality of
the results for a given mesh budget. Specifically, as we demonstrate be-
low, normalization tends to promote the coarser details of the function,
while avoiding higher resolution details, such as textures.

Saturation. To ensure that large-scale features are present, we may
optionally include coefficients for all wavelets whose stencil is already
present in the adaptive mesh (with respect to our chosen stencil scheme;
see Section 4.1). This increases the number of wavelet coefficients
while keeping the number of vertices, and thus, the mesh representa-
tion, fixed. We refer to this saturated selection strategy as Type II, with
Type I denoting the original unsaturated set of coefficients.

Table 1. Numbers of required vertices in the support of approximating
(a) and interpolating (i) wavelet stencils. Starting from the rectilinear
stencil (m,grid), we can remove the mulitlinearly interpolable vertices on
the support boundaries (m, int), and on the interior (m,min). The radial
interpolant allows us to remove more vertices (r,opt), but depending
on the stencil’s orientation, we conservatively include some additional
vertices (r,slice). Note that im := im,int(= im,min) and ir := ir,slice(= ir,opt).

Stencil Edge1D Square2D Edge2D Cube3D Square2D Edge3D

am,grid 7 49 35 343 245 175
am,int 7 37 25 181 119 79
am,min 5 25 15 125 75 45
ar,slice 5 23 {13,15} 99 {55,65} {37,39,45}
ar,opt 5 21 13 83 53 37

im,grid 3 9 15 27 45 75
im 3 9 9 27 19 27
ir 3 9 7 27 17 19

Figure 4 compares the four combinations of wavelet normalization
and saturation on the Tooth dataset [42] initialized by thresholding the
top 0.03% of approximating wavelet coefficients. It is apparent that
the unsaturated and unnormalized mesh aI

m in 4(b) wastes much of its
wavelet budget on high frequency noise, and does not faithfully recon-
struct the shape of the tooth. At the same time, these wavelets can be
relatively deep in the hierarchy, and therefore, their stencils impose
larger hierarchical overhead. Since many of the wavelets associated
with these extra vertices are fully supported in the mesh, we achieve a
more faithful approximation by saturating the mesh (aII

m in 4(c)), yield-
ing a significant improvement in PSNR. By thresholding on normalized
wavelets, we improve the approximation quality (e.g. increased PSNR),
and considerably reduce the footprint of the mesh (by ≈ 2/3). This is
in line with our experiments on a range of 2D and 3D datasets over a set
of extracted meshes. See the supplemental appendix, where we com-
pare the effects of saturation, normalization and interpolation against
the number of wavelets, vertices and supercubes and PSNR.

6.3 Efficiency of supercube-based octree representation

Here, we consider the efficiency of our adaptive representation in terms
of wavelet selectivity, the overhead of stencil size, and our supercube-
based encoding for the extracted meshes.

100 101 102 103 104 105 106 107 108

100

101

102

103

104

Num wavelet coefficients

no
rm

al
iz

ed
R

M
SE

interp
approx

interpIso
approxIso

Fig. 5. Half-open interval volumes extracted from the Armadillo distance field. Comparison of selecting wavelets intersecting the zero level set of a
5133 distance field (left) and selecting only by magnitude (middle). Saturated (Type II) normalized approximating wavelets aII,n were used in both
cases. The images reveal the interior distance field (black contours of cutaway armadillo meshes) and octree depth (colored cubes of cutaway
armadillo meshes and of cutaway octrees). Notice the distance field singularities preserved (middle), which do not contribute to the quality of the
extracted surface. The relative distance error and number of wavelets, vertices, and supercubes are (1.23; 677 K; 1.27 M; 54.0 K) on the left and
(3.67; 1.84 M; 3.39 M; 168 K) in the middle. The chart on the right plots the deviation from zero (normalized Root Mean Squared Error) given by the
approximate fields for 1,000,000 samples from the original triangulated surface.

0.1%	

1%	

10%	

100%	

1E-­‐09	
 1E-­‐08	
 1E-­‐07	
 1E-­‐06	
 1E-­‐05	
 1E-­‐04	
 1E-­‐03	

m
es
h	

de

ns
ity

	

per-­‐cell	
 processing	
 2me	
 (seconds)	

Fig. 6. Expected speedup (contours) due to adaptive mesh relative to full
resolution datasets for a given cell processing time in our visualization
kernel (x-axis) and density in our adaptive representation (y-axis).

Table 1 lists the overhead per wavelet for each type of stencil de-
fined in Section 4.1, in terms of the number of required vertices. Simply
removing the boundary vertices (m, int) of the wavelet stencil signif-
icantly reduces the overhead (e.g. by 50% for the 3D approximating
wavelets). This is interesting, since it extends beyond linear B-spline
wavelets [19]. That is, all tensor product wavelets have a rectilinear
stencil, the boundary of which always has zero-valued coefficients. The
multilinear optimization (‘Min multilinear’) gives another significant
reduction, and the use of the radial interpolant (‘Min radial’) reduces
it by half again, with respect to the original rectilinear block.

More importantly, these savings translate to runtime representations
in practice (see lower left chart in Figure 9). The normalized multi-
linear and radial meshes induce an overhead of about 2–5 vertices per
wavelet for unsaturated (Type I) and 1–2 vertices per wavelet when the
mesh wavelets are saturated. Compared to the full stencil, the radial
representation requires about half to a quarter of the vertices for the
normalized wavelets, and about half of the total number of supercubes
(our encoding primitive). On the other hand, the increase in stencil size
due to our conservative radial interpolant stencils (r,slice) compared
to the optimal (r,opt) incurs a slight overhead (roughly 5–10%).

Figure 6 illustrates the performance benefits of our adaptive repre-
sentation as a function of per-cell time associated with a hypothetical
processing task such as isocontouring or volume rendering. Rather
than arbitrarily choosing such a task, we parameterize the speedup
by the processing time. Although the per-cell time needed just to ex-
tract our adaptive meshes is around 8x longer than the per-cell time
needed to traverse the full-resolution grid, our method greatly reduces
the number of cells and therefore the total processing time. The top
curve in this figure shows the breakeven point, i.e. the highest fraction
of adaptive grid cells to full-resolution grid cells, for which our adap-
tive method yields the same total processing time as working with the
full-resolution grid. Because our adaptive meshes usually retain 1% or
fewer cells, we tend to achieve speedups of 10x or more.

6.4 Thresholding by function domain and range

For isosurfaces and interval volumes, we often require the field to be
accurate only within a range of function values. We here evaluate the
efficiency of representing only a scaffold of vertices around a given
isocontour from a signed distance field generated from a triangle mesh.
Specifically, we discard those wavelets whose support does not inter-
sect the zero set, allowing us to adapt surface detail by thresholding
the remaining wavelets by magnitude (similar to [17, 24, 48]).

We observe that the distance field has sharp singularities related to
the ‘medial’ regions – locations that are equally distant from several
points on the surface. By filtering with respect to a range of isovalues,
we are able to remove these singularities that we are not actually inter-
ested in, while retaining all details necessary to perfectly reconstruct
the surface using less than 1% of wavelet coefficients (see Figure 5).

We evaluate the quality of our approximation by computing the
mean squared distance, as given by our approximate field, evaluated
over the known surface. We relate this error to the error of the full-
resolution (sampled) distance field, which is non-zero since the dis-
tance field is generally not trilinear. Figure 5(right) demonstrates the
quality benefit of using isosurface thresholded wavelets (‘Iso’ suffix).
Specifically, the non-filtered distance field requires an order of magni-
tude more vertices to achieve the same error tolerance.

It is also common to select wavelets based on a subset of the func-
tion’s domain. In Figure 7 we demonstrate a region of interest query,
illustrating the gradual decrease in resolution outside the circular query
region, within which the function is shown at full detail.

Fig. 7. Region of interest filtering on the 40972 Puget Sound dataset. The
ROI is a circle with radius 400 samples centered around Mt. Rainier. The
mesh contains 130 K vertices in 11.4 K supercubes (average occupancy
97%), comprising less than 1% of the total field. Note how the bilinear
patches (colored by quadtree depth) define a globally C0 function.

6.5 Effects of the interpolant: linear vs. multilinear

Since adaptive octrees generate non-conforming meshes (i.e. they have
hanging nodes), the standard approach when approximating a function
adaptively over an octree is to triangulate the cubes into simplices,
either using red-green patterns [20, 33] or bisection-based triangula-
tions [47]. The field is then approximated using a linear interpolant.

Here, we demonstrate the benefits of using the interpolant associ-
ated with the underlying wavelet. For a given adaptive octree mesh
with reconstructed function values at the cube corners, we compare re-
constructing each cube using either a multilinear interpolant or a linear
interpolant based on simplex bisection [47]. An analysis of the peak
signal to noise ratio (PSNR) suggests that multilinear interpolation can
yield significant improvements in fidelity for both natural images and
volumetric data. For example, on the Rayleigh-Taylor instability (RTI)
dataset [7] (Figure 9), we found that adaptive meshes defined by the
same set of vertices can yield a PSNR improvement of several dB when
using the native multilinear interpolant over the mesh cells rather than a
linear interpolant over its tetrahedralization. See also the supplemental
material for detailed comparisons.

6.6 Multilinear interpolation on subsampled meshes

The relationship between radial predictors and linear B-spline wavelets
can also be beneficial when attempting to use a multilinear interpolant
over a subsampled scalar field, i.e. where we skip the wavelet analysis
phase and merely discard a subset of the samples that we do not care
about. Subsampling has been successful for linear interpolants over
triangulated meshes, where it forms the basis of numerous interactive
LOD schemes e.g. for view-dependent terrain visualization [15] and
view-dependent isosurface extraction [18], among numerous others.

Due to the centrality of multilinear interpolants in many visualiza-
tion applications (e.g. the Marching Cubes algorithm [27] and direct
volume rendering [1]), we would like to directly apply a multilinear
interpolant to a subsampled regular grid. A natural choice would be to
edge-balance the mesh (see Section 2), as in several adaptive isosurface
extraction techniques [37, 50], and to apply a multilinear interpolant
on the cubes of the mesh. Unfortunately, although this approach de-
fines a globally C0 function, it leads to disturbing visual artifacts (see
Figure 8(a)). However, when we apply a radial interpolant to the same
mesh, the artifacts disappear (see Figure 8(b)), and we have achieved a
reconstruction equivalent to our interpolating linear B-spline wavelet
approximating the original function.

To see why the radial interpolant helps, recall that interpolating
wavelets have only the predictor stage (w-lift) but not the update stage
(s-lift) in the lifting scheme. Thus, an interpolating wavelet’s coeffi-
cient is associated with a (primal) face f of the mesh, and its interpo-
lated value depends only on the values of the corner vertices of f . Thus,
a subsampled mesh corresponds to an interpolating wavelet synthesis
defined by all of the retained vertices in our subsampled mesh. By
following our octree reconstruction algorithm (Section 5.2.1) we see
that for the interpolating ‘Min radial’ extraction, we need only refine
all octree parents of the vertices of the dual cubes of these vertices
(giving an edge-balanced mesh), and radially interpolate the cells.

(a) Corner – PSNR:25.9 (b) Radial – PSNR:26.9

(a) Corner – PSNR:25.9 (b) Radial – PSNR:26.9(a) Corner – PSNR:25.9 (b) Radial – PSNR:26.9

Fig. 8. (a) Artifacts when using a corner-based bilinear predictor to bal-
ance a subsampled adaptive mesh. (b) Radial spectral predictors based
on corners and edges contain the complete support of their underlying
basis function. Highlighted areas (red circles) are magnified by 2.25x.

7 CONCLUSIONS

In this paper, we have developed a framework based on adaptive oc-
tree meshes for efficiently encoding and reconstructing fields defined
by tensor product wavelets. This framework enables us to represent
simplified functions at runtime in an output sensitive manner. Appli-
cations like isosurfacing, DVR, ray tracing, and image panning can
benefit from the reduction in both storage and computation when work-
ing with such an adaptive mesh. We have analyzed the hierarchical
dependency relation among the wavelets to define an adaptive refine-
ment strategy that allows extracting the coarsest mesh for representing
any combination of wavelets. Using this dependency relation, we have
demonstrated the potential benefits of saturating the mesh with the
set of wavelets whose stencils are already present in the mesh. When
evaluating the function on the interior of the cells of the mesh, we
have demonstrated the quality benefits of using the interpolant induced
by the wavelet scheme rather than a piecewise linear interpolant on a
simplicial subdivision of the mesh, as in previous work [3, 20, 47].

In the case of linear B-spline wavelets, we have empirically and
visually demonstrated quality improvements when using the wavelet
scheme’s underlying multilinear interpolant on the cubic cells of the
octree rather than a linear interpolant on a simplicial subdivision.

We have demonstrated the benefits of the proposed approach us-
ing several different wavelet filtering strategies, including coefficient
thresholding, region of interest queries, and isovalue-based threshold-
ing. In most cases, we can achieve a faithful approximation to the
desired features of the underlying function using only a small fraction
of the space necessary for the original domain on which the problem
was defined.

A limitation of the current work is that modification of the function
(e.g. due to the insertion of a new wavelet coefficient) is not a local
operation, since it could require cascades of updates over the entire
support of the wavelet. In the worst case, insertion of a wavelet could
require all vertices in the adaptive mesh to update, for example, if the
wavelet associated with the root of the octree is added to a mesh. As
part of our ongoing work, we are developing a refinement scheme that
will allow incremental updates to the mesh.

As future work, we would like to implement adaptive wavelet trans-
forms for other tensor product wavelets. An interesting generalization
would be to cubic B-spline wavelets (with more than two lifting steps),
as this would make our scheme globally C1 continuous.

ACKNOWLEDGMENTS

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract
DE-AC52-07NA27344, and was supported by the Office of Advanced
Scientific Computing Research. We wish to thank the reviewers for
their valuable feedback and the various data providers for making their
data sets freely available.

TRILINEARLY INTERPOLATED LINEARLY INTERPOLATED

aII,n
m,T :0.1% (23.8 K, 39.4 K, 1.7 K); PSNR: 41.3 aU

m,D:13 (18.7 K, 35.9 K, 888); PSNR: 29.6 aII,n
l,T :0.1% (21.9 K, 50.0K, 1.9 K); PSNR: 39.1 aU

l,D:13 (18.7 K, 35.9 K, 888); PSNR: 28.4

aII,n
m,T :1% (265 K, 415 K, 17.4 K); PSNR: 56.2 aU

m,D:17 (242 K, 275 K, 5.8 K); PSNR: 43.7 aII,n
l,T :1% (248 K, 506 K, 19.0 K); PSNR: 52.8 aU

l,D:17 (242 K, 275 K, 5.8 K); PSNR: 40.6

aII,n
m,T :10% (2.83 M, 3.36 M, 74.2 K); PSNR: 99.0 aU

m,D:20 (1.89 M, 2.15 M, 41.7 K); PSNR: 55.0 aII,n
l,T :10% (2.80 M, 3.49 M, 75.5 K); PSNR: 97.3 aU

l,D:20 (1.89 M, 2.15 M, 41.7 K); PSNR: 51.5

100 101 102 103 104 105 106 107

12
18
24
30
36
42
48
54
60
66
72
78

Num wavelet coefficients

PS
N

R

aI I,n
multi

iI I,n
multi

aI I,n
linear

iI I,n
linear

aU
multi

iUmulti

100 101 102 103 104 105 106 107100

101

102

Num wavelets

Ve
rt

ic
es

pe
r

w
av

el
et

(l
og

) aI I,n
r,slice

aI I,n
m,min

aI I,n
m,int

aI I,n
m,grid

aI I
r,slice

aI I
m,min

aI I
m,int

aI I
m,grid

aU

Fig. 9. Surfaces of ray traced interval volumes on the 2573 Rayleigh-Taylor instability dataset [7] comparing approximating aII,n wavelets (raytraced
at full resolution with tricubic B-spline interpolation on bottom right) for meshes defined by similar number of wavelet coefficients (rows). Columns
show close-ups of adaptive meshes extracted using (normalized and saturated) wavelet magnitude thresholded meshes (columns 1 and 3) and
progressive uniform meshes at a given depth in the hierarchy (columns 2 and 4) when interpolated trilinearly over the cubes of the adaptive octree
(columns 1 and 2) and linearly over a corresponding tetrahedralized mesh (columns 3 and 4). Rows show: 0.1% thresholded wavelets (T: 0.1%) vs.
uniform depth 13 (D: 13); 1% thresholded vs. depth 17 (T: 1% vs. D: 17) and 10% thresholded vs. depth 20 (T: 10% vs. D: 20). When thresholding
above T: 10%, the images are virtually indistinguishable from those of the mesh at full resolution. The numbers below each figure indicate the
number of wavelets, vertices and supercubes in the corresponding mesh as well as the PSNR of the approximation. Note that the surface artifacts
are due to the lack of normal continuity of the interpolant across cell boundaries (trilinear on the left, linear on the right). When the interpolant is
fixed (columns 1 vs. 2, and 3 vs. 4), wavelet filtering achieves similar PSNR using an order of magnitude fewer vertices. Alternatively, for a fixed
mesh (columns 1 vs. 3 and 2 vs. 4), multilinear interpolants achieve a gain of several decibels PSNR on the same mesh. The chart on the lower left
provides a broader overview of the experiment from which this example was selected and the chart on the lower middle indicates the efficiency of
the representation for different stencils in terms of the number of vertices per wavelet using the saturated (Type II, middle) wavelets.

REFERENCES

[1] M. Ament, D. Weiskopf, and H. Carr. Direct interval volume visualization.
IEEE Transactions on Visualization and Computer Graphics, 16(6):1505–
1514, 2010.

[2] L. Balmelli. Rate-distortion optimal mesh simplification for communi-
cations. PhD thesis, Ecole Polytechnique Fédérale de Lausanne EPFL,
2000.

[3] L. Balmelli, T. Liebling, and M. Vetterli. Computational analysis of mesh
simplification using global error. Computational Geometry Theory and
Applications, 25(3):171–196, 2003.

[4] R. Bank, A. H. Sherman, and A. Weiser. Refinement algorithms and data
structures for regular local mesh refinement. In R. Stepleman, M. Carver,
R. Peskin, W. F. Ames, and R. Vichnevetsky, editors, Scientific Computing,
IMACS, volume 1, pages 3–17. North-Holland, Amsterdam, 1983.

[5] M. Berger and P. Colella. Local adaptive mesh refinement for shock
hydrodynamics. Journal of Computational Physics, 82(1):64–84, 1989.

[6] M. Bertram, M. Duchaineau, B. Hamann, and K. Joy. Generalized B-
spline subdivision-surface wavelets for geometry compression. IEEE
Transactions on Visualization and Computer Graphics, 10(3):326–338,
May-June 2004.

[7] W. Cabot and A. Cook. Reynolds number effects on Rayleigh-Taylor in-
stability with possible implications for type Ia supernovae. Nature Physics,
2(8):562–568, 2006.

[8] H. Carr, T. Moller, and J. Snoeyink. Artifacts caused by simplicial sub-
division. IEEE Transactions on Visualization and Computer Graphics,
12(2):231–242, 2006.

[9] N. Chegini and R. Stevenson. The adaptive tensor product wavelet scheme:
Sparse matrices and the application to singularly perturbed problems. IMA
Journal of Numerical Analysis, 32(1):75–104, 2011.

[10] P. Cignoni, F. Ganovelli, C. Montani, and R. Scopigno. Reconstruction
of topologically correct and adaptive trilinear isosurfaces. Computers &
Graphics, 24(3):399–418, 2000.

[11] R. Claypoole, Jr., R. Baraniuk, and R. Nowak. Adaptive wavelet trans-
forms via lifting. In Proceedings IEEE Acoustics, Speech and Signal
Processing, volume 3, pages 1513–1516, May 1998.

[12] A. Cohen, I. Daubechies, and J. Feauveau. Biorthogonal bases of com-
pactly supported wavelets. Communications on pure and applied mathe-
matics, 45(5):485–560, 1992.

[13] I. Daubechies and W. Sweldens. Factoring wavelet transforms into lifting
steps. Journal of Fourier analysis and applications, 4(3):247–269, 1998.

[14] M. Domingues, S. Gomes, O. Roussel, and K. Schneider. Adaptive mul-
tiresolution methods. Proceedinges ESAIM, 32:1–96, 2011. Summer
school on multiresolution and Adaptive Mesh Refinement methods.

[15] M. Duchaineau, M. Wolinsky, D. E. Sigeti, M. C. Miller, C. Aldrich,
and M. B. Mineev-Weinstein. ROAMing terrain: Real-time Optimally
Adapting Meshes. In Proceedings IEEE Visualization, pages 81–88, 1997.

[16] H. Edelsbrunner and M. Kerber. Dual complexes of cubical subdivisions
of Rn. Discrete & Computational Geometry, 47(2):393–414, 2012.

[17] S. F. Frisken, R. N. Perry, A. P. Rockwood, and T. R. Jones. Adaptively
sampled distance fields: A general representation of shape for computer
graphics. In Proceedings SIGGRAPH, pages 249–254, New Orleans, LA,
July 2000. ACM Press.

[18] B. Gregorski, M. Duchaineau, P. Lindstrom, V. Pascucci, and K. Joy.
Interactive view-dependent rendering of large isosurfaces. In Proceedings
IEEE Visualization, pages 475–484. IEEE Computer Society Washington,
DC, USA, October 2002.

[19] E. Grinspun, P. Krysl, and P. Schröder. CHARMS: A simple framework
for adaptive simulation. ACM Transactions on Graphics, 21(3):281–290,
July 2002.

[20] M. Gross, O. Staadt, and R. Gatti. Efficient triangular surface approxima-
tions using wavelets and quadtree data structures. IEEE Transactions on
Visualization and Computer Graphics, 2(2):130–143, June 1996.

[21] P. Heckbert. Survey of texture mapping. IEEE Computer Graphics &
Applications, 6(11):56–67, 1986.

[22] M. Holmström. Solving hyperbolic PDEs using interpolating wavelets.
SIAM Journal on Scientific Computing, 21(2):405–420, 1999.

[23] L. Ibarria, P. Lindstrom, and J. Rossignac. Spectral interpolation on 3 x 3
stencils for prediction and compression. Journal of Computers, 2(8):53–
63, 2007.

[24] D. Laney, M. Bertram, M. Duchaineau, and N. Max. Multiresolution
distance volumes for progressive surface compression. In Proceedings 3D
Data Processing Visualization and Transmission, pages 470–479, 2002.

[25] L. Linsen, B. Hamann, and K. Joy. Wavelets for adaptively refined “3rd-
root-of-2” subdivision meshes. International Journal of Computers &
Applications, 29(3):223–231, 2007.

[26] L. Linsen, V. Pascucci, M. Duchaineau, B. Hamann, and K. Joy. Wavelet-
based multiresolution with n√2 subdivision. Journal on Computing, Spe-
cial Edition: Dagstuhl Seminar on Geometric Modelling, 72(1–2):129–
142, 2004.

[27] W. Lorensen and H. Cline. Marching cubes: A high resolution 3D sur-
face construction algorithm. In Proceedings SIGGRAPH, pages 163–169.
ACM Press New York, NY, USA, 1987.

[28] S. Mallat. A wavelet tour of signal processing. Academic press, 2008.
[29] P. Moran and D. Ellsworth. Visualization of AMR data with multi-level

dual-mesh interpolation. IEEE Transactions on Visualization and Com-
puter Graphics, 17(12):1862–1871, 2011.

[30] H. Müller and M. Stark. Adaptive generation of surfaces in volume data.
The Visual Computer, 9(4):182–199, 1993.

[31] G. M. Nielson. On marching cubes. IEEE Transactions on Visualization
and Computer Graphics, 9(3):283–297, 2003.

[32] B. Payne and A. Toga. Surface mapping brain function on 3D models.
IEEE Computer Graphics & Applications, 10(5):33–41, Sept. 1990.

[33] S. Plantinga and G. Vegter. Isotopic meshing of implicit surfaces. The
Visual Computer, 23(1):45–58, 2007.

[34] A. Said and W. Pearlman. A new, fast, and efficient image codec based on
set partitioning in hierarchical trees. IEEE Transactions on Circuits and
Systems for Video Technology, 6(3):243–250, June 1996.

[35] H. Samet. Foundations of Multidimensional and Metric Data Structures.
The Morgan Kaufmann series in computer graphics and geometric model-
ing. Morgan Kaufmann, 2006.

[36] J. Shapiro. Embedded image coding using zerotrees of wavelet coef-
ficients. IEEE Transactions on Signal Processing, 41(12):3445–3462,
1993.

[37] R. Shekhar, E. Fayyad, R. Yagel, and J. Cornhill. Octree-based decimation
of marching cubes surfaces. In Proceedings IEEE Visualization, pages
335–342, Los Alamitos, CA, USA, 1996. IEEE Computer Society.

[38] R. Shu, C. Zhou, and M. Kankanhalli. Adaptive marching cubes. The
Visual Computer, 11(4):202–217, 1995.

[39] J. Stam. Exact evaluation of Catmull-Clark subdivision surfaces at arbi-
trary parameter values. In Proceedings ACM SIGGRAPH, pages 395–404,
New York, NY, USA, 1998. ACM.

[40] E. Stollnitz, A. DeRose, and D. Salesin. Wavelets for Computer Graphics:
Theory and Applications. Morgan Kaufmann, 1996.

[41] W. Sweldens. The lifting scheme: A construction of second generation
wavelets. SIAM Journal on Mathematical Analysis, 29(2):511–546, 1998.

[42] The volume library. http://www9.informatik.uni-erlangen.de/External/
vollib.

[43] Z. Wang, A. Bovik, H. Sheikh, and E. Simoncelli. Image quality assess-
ment: from error visibility to structural similarity. IEEE Transactions on
Image Processing, 13(4):600–612, April 2004.

[44] G. Weber, O. Kreylos, T. Ligocki, J. Shalf, H. Hagen, B. Hamann, and
K. Joy. Extraction of crack-free isosurfaces from adaptive mesh refine-
ment data. In G. Farin, B. Hamann, and H. Hagen, editors, Hierarchical
and Geometrical Methods in Scientific Visualization, Mathematics and
Visualization, pages 19–40. Springer Berlin Heidelberg, 2003.

[45] K. Weiss and L. De Floriani. Diamond hierarchies of arbitrary dimension.
Computer Graphics Forum, 28(5):1289–1300, 2009.

[46] K. Weiss and L. De Floriani. Supercubes: A high-level primitive for
diamond hierarchies. IEEE Transactions on Visualization and Computer
Graphics, 15(6):1603–1610, November-December 2009.

[47] K. Weiss and L. De Floriani. Bisection-based triangulations of nested
hypercubic meshes. In S. Shontz, editor, Proceedings 19th International
Meshing Roundtable, pages 315–333, October 2010.

[48] K. Weiss and L. De Floriani. Isodiamond hierarchies: An efficient mul-
tiresolution representation for isosurfaces and interval volumes. IEEE
Transactions on Visualization and Computer Graphics, 16(4):583 – 598,
July-Aug. 2010.

[49] K. Weiss and L. De Floriani. Simplex and diamond hierarchies: Models
and applications. Computer Graphics Forum, 30(8):2127–2155, 2011.

[50] R. Westermann, L. Kobbelt, and T. Ertl. Real-time exploration of reg-
ular volume data by adaptive reconstruction of isosurfaces. The Visual
Computer, 15(2):100–111, 1999.

[51] Y. Zhang and C. Bajaj. Adaptive and quality quadrilateral/hexahedral
meshing from volumetric data. Computer Methods in Applied Mechanics
and Engineering, 195(9-12):942–960, 2006.

aII,n (6.3 K, 7.4 K, 1.3 K); PSNR: 23.2; SSIM .76 aI,n (2.6 K, 7.4 K, 1.3 K); PSNR: 22.9; SSIM .74 aII (11.7 K, 13.8 K, 2.5 K); PSNR: 21.8; SSIM .70 aI (2.6 K, 13.8 K, 2.5 K); PSNR: 15.1; SSIM .47

iII,n (5.0 K, 5.2 K, 965); PSNR:21.0; SSIM:.66 iI,n (2.6 K, 5.2 K, 965 K); PSNR:20.4; SSIM:.63 iII (9.5 K, 10.0 K, 1.9 K); PSNR:18.3; SSIM:.60 iI (2.6 K, 10.0 K, 1.9 K); PSNR:13.0; SSIM:.36

Comparison of the effects of saturation and normalization on the approximating (top row) and interpolating (bottom row) 5132 Barbara dataset
thresholded at 1% of wavelet coefficients (≈ 2.6 K coefficients). Columns show (left to right): normalized saturated (·II,n), normalized
unsaturated (·I,n), unnormalized saturated (·II) and unnormalized unsaturated (·I) approximations. We report the number of wavelet coefficients
|ψ|, vertices |v|, and supercubes |s|, in the reconstructed meshes (listed as (|ψ|, |v|, |s|)) as well as their Peak Signal to Noise Ratio (PSNR) and
structural similarity (SSIM) [43]. Inlays show the cells of the corresponding quadtrees, colored by hierarchy level. We observe that the saturated
variants (columns 1 and 3) are able to achieve higher fidelity (in terms of PSNR and SSIM) than their unsaturated counterparts (columns 2 and
4) over the same domain decomposition. We also observe that the unnormalized variants (columns 3 and 4) spend a significant portion of their
wavelet budget trying to resolve high resolution features of the underlying function, while the normalized variants (columns 1 and 2) select
important wavelets from coarser levels of resolution. Thus the normalized meshes can reconstruct higher fidelity meshes using fewer wavelet
coefficients. Finally, we observe that the approximating wavelets (top row) achieve better reconstruction fidelity than interpolating wavelets
(bottom row) defined by the same number of wavelet coefficients, but require a larger support mesh.

