THE PR-STAR OCTREE:

A *spatio-topological* data structure for tetrahedral meshes

Kenneth Weiss

University of Maryland, College Park

Riccardo Fellegara

University of Genova, IT

Leila De Floriani

University of Genova, IT University of Maryland, College Park

Marcelo Velloso

NUNERSITA NINVERSITA NINVERSITA

University of Maryland, College Park

19th ACM SIGSPATIAL GIS | Chicago, IL | November 1-4, 2011

Motivation

Tetrahedral meshes

- Increasingly important for analysis and visualization of scientific datasets
- Captured/simulated at increasingly fine resolution

Mesh connectivity

- Important for many tasks that process the mesh
 - Navigation, visibility, morphology, discrete curvature estimates ray tracing/path following, simplification and repair, etc...
- Expensive to encode
- Representations typically are catered to needs of application

Processing rates (CPU/GPU) increasing faster than memory

Favor reductions in memory over those in computing

PR-star Octree

Contributions

- "Topology through space"
 - Topological connectivity queries through spatial index on embedding space
- Encode just enough information to enable efficient reconstruction of all topological relations
 - Allows optimal application-dependent local data structures to be generated at runtime
 - Construction costs amortized over multiple coherent queries
- Streaming algorithms over dataset
 - Boundary determination, local curvature estimates, simplification
 - Many more...

Benefits of this representation increase with dataset size

Related Work

Spatial data structures

- Focus is on efficient spatial queries
 - e.g. point location, (k)- nearest neighbor query
- Points:
 - PR- quadtrees, octrees and kd-trees [Samet:2006]
- Polygons, edges and graphs; Triangles:
 - ▶ PM-family of quadtrees PMI-, PM2-, PM3-, PMR-
- Tetrahedral meshes [De Floriani et al.:2010]

Topological data structures

- Focus is on efficient connectivity queries
- Incidence-based IG [Edelsbrunner: 1987]
- Adjacency-based IA [Paoluzzi:1993; Nielson:1997]
- Spatial index on triangle mesh for out-of-core processing [Cignoni:2003] or for expensive processing [Dey et al.: 2010]

Talk overview

Background

PR-star Octree

Region Octrees

- Hierarchical domain decomposition
- Regular refinement
 - Each cubic parent node is replaced by eight children nodes covering its domain
- Root node
 - Cubic node covering entire domain
- Leaf node
 - Cubic node without children
 - Non-leaf nodes are called internal nodes

PR Octree: Point Region Octree

Region octree used as spatial index on a set of points

- Points are uniquely indexed by a single leaf node
- Bucket threshold k_v
 - Used to decide when to split a node
 - Decomposition entirely dependent on k_v
- A node is considered *full* when it indexes k_v points
 - Redistribute points to children upon insertion into *full* leaf node

PR Octree: Representation

- An array of points in $R^3 V$
- ► A set (array) of octree nodes **N**
 - Each leaf node \boldsymbol{n} in \boldsymbol{N} indexes the set of at most k_v points from \boldsymbol{V} that lie within its domain

Topological Connectivity Relations

Fundamental connectivity primitives for mesh elements

Boundary relations – $R_{p,q}$ (p<q)

- Set of q-simplices that are a face of a given p-simplex
- e.g. $R_{3,0}$ is the Tetrahedron-Vertex relation

Co-boundary relations – $R_{q,p}$ (p<q)

- Set of simplices that have a given simplex as a face
- e.g. $R_{0,3}$ is the Vertex-Tetrahedron relation
 - \blacktriangleright The tetrahedra in the star of v

Adjacency relations – $R_{p,p}$

- Set of *p*-simplices that adjacent to a given simplex along a *p*-1 face (*p*>0) or an edge (*p*=0)
- e.g. $R_{3,3}$ is the Tetrahedron-Tetrahedron relation

Topological Data Structures

- Explicitly encode a subset of the topological relations
- Implicitly encode a (larger) subset of the relations
 - Reconstruct relevant neighborhoods from encoded relations at runtime
- Application-dependent data formulations
 - Incidence-based data structures
 - e.g. Incidence Graph [Edelsbrunner: 1987]
 - Adjacency-based data structures
 - e.g. Indexed data structure with Adjacency (IA) [Paoluzzi et al: 1993]
- Adjacency-based data structures more compact when we are mainly interested in *top cells* [DeFloriani and Hui : 2006]

Indexed tetrahedral mesh

- Array of vertices V
 - Each vertex v_i encodes a position (x,y,z) and possibly other attributes
- Array of tetrahedra T
 - Each tetrahedron t_j encodes the index
 in V of its vertices and possibly other attributes

IA data structure: Indexed tetrahedral mesh with Adjacencies

- Array of vertices V
 - Encodes position of each vertex
 - Encodes a single incident tetrahedron in T
- Array of tetrahedra **T**
 - Encodes indices of four vertices in V
 - Encodes indices of four adjacent tetrahedra in T

PR-star Octree

- "Topology through space"
 - A spatial data structure for querying topological connectivity
- Augment PR octree with the set of tetrahedra from the mesh that are incident in its vertices
 - ▶ i.e. the tetrahedra in the star of its vertices

Generation of PR-star

Three steps

\blacktriangleright Input is soup of tetrahedra defining a tetrahedral mesh Σ

Step 1: Vertices

- Create a PR octree **N** on vertices **V** of mesh
- Based on user selected bucket threshold k_v

Step 2: Tetrahedra

• Add tetrahedra T to appropriate leaf nodes of N

Step 3: Spatial sort

- Reorganize V and T based on spatial sorting induced by N
 - Each node in N indexes a contiguous range of vertices in V
 - Can be encoded via two indices v_{start} and v_{end}
- For \boldsymbol{T} we store a pointer to a list of tetrahedra indices

PR-star Octree Representation

$$\mathbf{V} \quad oldsymbol{v}_0 \quad oldsymbol{v}_1 \quad oldsymbol{v}_2 \quad \cdots \quad oldsymbol{v}_{n-1}$$

Encodes: geometry of the mesh

[3 pointers]

$$\mathbf{T} \quad t_0 \quad t_1 \quad t_2 \quad \cdots \quad t_{m-1}$$

Encodes: four indices in **V** of its vertices [4 pointers]

$$\mathbf{N} \mid n_0 \mid n_1 \mid n_2 \mid \cdots \mid n_{p-1}$$

Encodes: hierarchical octree information[3 pointers]range of vertices (v_{start}, v_{end}) [2 pointers]pointer to list of incident tetrahedra[2 pointers]

PR-star Octree Representation

$$\mathbf{V} \quad \boldsymbol{v}_0 \quad \boldsymbol{v}_1 \quad \boldsymbol{v}_2 \quad \cdots \quad \boldsymbol{v}_{n-1}$$

Evaluation

Indexed Tetrahedral Mesh Representation

- Fixed cost of both data structures
- Total $4|\mathbf{T}| + 3|\mathbf{V}| \sim 27|\mathbf{V}|$

IA data structure (extended)

- Topological: $4 |\mathbf{T}| + 3 |\mathbf{V}| \sim 25 |\mathbf{V}|$
- Total: $8 |\mathbf{T}| + 4 |\mathbf{V}| \sim 52 |\mathbf{V}|$

PR-star data structure

- Topological: $\chi |\mathbf{T}| + 7 |\mathbf{N}| \sim 13 |\mathbf{V}|$ •
- Total: $8 |\mathbf{T}| + 4 |\mathbf{V}| \sim 40 |\mathbf{V}|$

Comparison ~50% topological ~80% total storage

Simplifying assumptions: (see paper for details) $T \mid \sim 6 \mid V \mid \qquad \mid N \mid \sim \mid V \mid / k_v \qquad \chi \sim 2 \qquad k_v \geq 7$

PR-star Octree:

Example

- ▶ F117 tetrahedral mesh
 - |V| = 48.5 K
 - $|\mathbf{T}| = 240 K$
 - IA storage: (20.8; 43.6)

- $k_v = 50$ Storage: (12.8; 35.6)
- $k_v = 100$ $\chi = 2.6; |\mathbf{N}| = 4 \text{ K}$ $\chi = 2.2; |\mathbf{N}| = 1.9 \text{ K}$ $\chi = 2.0; |\mathbf{N}| = 1.4 \text{ K}$ Storage: (10.9; 33.7)
- $k_{v} = 200$ Storage: (10.0; 32.8)

Applications of PR-star General Strategy

- Streaming algorithm
 - Iterate through octree nodes
- For each leaf octree node
 - Step I: Build application-dependent local data structure
 - Step 2: Process mesh locally
 - Step 3: Discard local data structure
- Cost of building data structures is amortized over multiple local operations

Local discrete curvature estimates

- For terrain
 - Elevations at samples in 2D domain provide embedding as 3D TIN
 - Curvature is concentrated in vertices
 - Depends on geometry of its star
 - e.g. angle deficit between 2D and 3D [Aleksandrov:1957]
- For volume data
 - Scalar values at samples in 3D domain provide embedding as 4D hypersurface
 - Curvature is concentrated in vertices
 - Depends on geometry of its star
 - e.g. angle deficit between 3D and 4D [Mesmoudi et al.:2008]

Results Timings for generating VT and distortion

Compared to IA data structure

Key observations

- Building VT is always faster for PR-star
 - Amortized cost over entire mesh
- For small meshes with small k_v
 - Distortion computation is faster with IA
 - Value of χ plays a dominant role here
- > As mesh size increases, and as k_v increases
 - Distortion is faster with PR-star
- Trend: Effectiveness of PR-star increases with mesh size

Application Mesh simplification

- Many mesh generation processes oversample the field
- Simplification algorithms are critical to downstream processing but are resource intensive
 - Local mesh modifications require neighborhoods of vertices
 - Better results are obtained by ordering the simplifications

Local simplification Half-edge collapse

- ▶ Simplify edge *e*: (*w*,*v*)
- Requires:
 - VT relation for vertex v
 - > VT relation for vertex w
 - ET relation for edge *e*
- Steps:
 - 1. Delete tetrahedra in ET applies to T
 - 2. Modify vertices of tetrahedra in VT(v) applies to V
 - 3. Delete vertex v applies to V
 - 4. Add tetrahedra in VT(v) to VT(w) and remove ET(e) applies to local data structure
 - 5. Remove VT(v) applies to local data structure

Simplification Algorithm

Repeat the following until there is not change

- ALGORITHM: SIMPLIFYMESH()
 - for each node *n* of *N*
 - Generate VT relation of all vertices \boldsymbol{v}_n
 - Enqueue all edges to be checked for collapse
 - while (queue is not empty)
 - \Box Edge *e* = top element of queue
 - \Box if (e passes test for simplification)
 - \Box EdgeCollapse (e)

SIMPLIFYOCTREE(N) // by merging sibling leaf nodes

Results

- Compare PR-star with different k_v values
- Special case: $k_v = \infty$
 - Octree only has a single node
- Summary:
 - Similar simplification results
 - Around the same number of tetrahedra removed
 - In around the same amount of time (\pm 20%)
 - using < 1% of the memory</p>

Trend: Better results for larger meshes and larger values of k_{ν}

Discussion

Introduced PR-star Octree for tetrahedral meshes

- Spatio-Topological approach
- Spatial index "for free"
 - One of the difficulties in topological data structures on spatial data is finding the initial vertices
- Simple global data structure

Optimal local data structures

- Not forced to decide in advance which operations (e.g. incidence, adjacency) to optimize
- Efficiently build the data structure at runtime without worrying (too much) about memory consumption
- Results improve with increased mesh resolution

Limitations

Only works for spatial meshes

 Use traditional topological data structure for abstract complexes

Does not replace spatial data structures

- Not optimized for general spatial queries
 - E.g. point location (find tetrahedron containing a point)
- Use PM-family of meshes here
- But can handle range queries

Future work

- Tuning for parameter k_v
 - > Preliminary results: $k_v \sim$ 600-800 appears to be the sweet spot
 - Significantly smaller octrees
 - More time to build the local data structures but less time to traverse the octree
 - Not "too much" extra time to generate the local data structure
- Cache-based algorithms for non-local processing of mesh
 - e.g. simplification of edges spanning two octree nodes
 - Use a cache of expanded nodes
 - Preliminary results: Around 2% of nodes is sufficient for best results
- Exploit inherent parallelism of data structure

Thank you

Questions? Comments?

- Anonymous reviewers
- Funding Sources
 - ▶ NSF Grant IIS-1116747
 - Italian MUIR-PRIN 2009

- Paola Magillo
- Mesh sources
 AIM@Shape,Volvis
 - C. Silva, R. Haimes