
A spatio-topological data structure

for tetrahedral meshes

Kenneth Weiss
 University of Maryland, College Park

Riccardo Fellegara
 University of Genova, IT

Leila De Floriani
 University of Genova, IT

 University of Maryland, College Park

Marcelo Velloso
 University of Maryland, College Park

19th ACM SIGSPATIAL GIS | Chicago, IL | November 1-4, 2011

THE PR-STAR OCTREE:

Motivation

 Tetrahedral meshes

 Increasingly important for analysis

and visualization of scientific datasets

 Captured/simulated at

increasingly fine resolution

 Mesh connectivity

 Important for many tasks that process the mesh

 Navigation, visibility, morphology, discrete curvature estimates

ray tracing/path following, simplification and repair, etc…

 Expensive to encode

 Representations typically are catered to needs of application

 Processing rates (CPU/GPU) increasing faster than memory

 Favor reductions in memory over those in computing

PR-star Octree
Contributions

 “Topology through space”

 Topological connectivity queries

through spatial index on embedding space

 Encode just enough information to enable efficient

reconstruction of all topological relations

 Allows optimal application-dependent

local data structures to be generated at runtime

 Construction costs amortized over multiple coherent queries

 Streaming algorithms over dataset

 Boundary determination, local curvature estimates, simplification

 Many more…

 Benefits of this representation increase with dataset size

Related Work

 Spatial data structures

 Focus is on efficient spatial queries

 e.g. point location, (k)- nearest neighbor query

 Points:

 PR- quadtrees, octrees and kd-trees [Samet:2006]

 Polygons, edges and graphs; Triangles:

 PM-family of quadtrees – PM1-, PM2-, PM3-, PMR-

 Tetrahedral meshes [De Floriani et al.:2010]

 Topological data structures

 Focus is on efficient connectivity queries

 Incidence-based – IG [Edelsbrunner:1987]

 Adjacency-based – IA [Paoluzzi:1993; Nielson:1997]

 Spatial index on triangle mesh for out-of-core

processing [Cignoni:2003] or for expensive processing [Dey et al.: 2010]

Talk overview

Background PR-star Octree

A

B
C

B'

C '

b
c

a

O

Applications

Region Octrees

 Hierarchical domain decomposition

 Regular refinement

 Each cubic parent node is replaced by

eight children nodes covering its domain

 Root node

 Cubic node covering entire domain

 Leaf node

 Cubic node without children

 Non-leaf nodes are called internal nodes

Parent (1 pointer)

Children (1 pointer)

PR Octree:
Point Region Octree

 Region octree used as spatial index on a set of points

 Points are uniquely indexed by a single leaf node

 Bucket threshold kv

 Used to decide when to split a node

 Decomposition entirely dependent on kv

 A node is considered full when it indexes kv points

 Redistribute points to children upon insertion into full leaf node

kv = 6

PR Octree:
Representation

 An array of points in R3 – V

 A set (array) of octree nodes – N

 Each leaf node n in N indexes the set

of at most kv points from V that lie within its domain

Topological Connectivity Relations

 Fundamental connectivity primitives for mesh elements

Boundary relations – Rp,q (p<q)

 Set of q-simplices that are a face of a given p-simplex

 e.g. R3,0 is the Tetrahedron-Vertex relation

Co-boundary relations – Rq,p (p<q)

 Set of simplices that have a given simplex as a face

 e.g. R0,3 is the Vertex-Tetrahedron relation

 The tetrahedra in the star of v

Adjacency relations – Rp,p

 Set of p-simplices that adjacent to a given simplex

along a p-1 face (p>0) or an edge (p=0)

 e.g. R3,3 is the Tetrahedron-Tetrahedron relation

R2,3

R3,2

4

3

1

2

R3,3

Topological Data Structures

 Explicitly encode a subset of the topological relations

 Implicitly encode a (larger) subset of the relations

 Reconstruct relevant neighborhoods from

encoded relations at runtime

 Application-dependent data formulations

 Incidence-based data structures

 e.g. Incidence Graph [Edelsbrunner:1987]

 Adjacency-based data structures

 e.g. Indexed data structure with Adjacency (IA) [Paoluzzi et al:1993]

 Adjacency-based data structures more compact when we

are mainly interested in top cells [DeFloriani and Hui : 2006]

Indexed tetrahedral mesh

 Array of vertices V

 Each vertex vi encodes a position (x,y,z)

and possibly other attributes

 Array of tetrahedra T

 Each tetrahedron tj encodes the index

in V of its vertices and possibly other attributes

vi = {x, y, z}

ti = {iv0, iv1, iv2, iv3}

R3,0

IA data structure:
Indexed tetrahedral mesh with Adjacencies

 Array of vertices V

 Encodes position of each vertex

 Encodes a single incident tetrahedron in T

 Array of tetrahedra T

 Encodes indices of four vertices in V

 Encodes indices of four adjacent tetrahedra in T

 it0

ti ={ } iv0, iv1, iv2, iv3

 it0, it1, it2, it3

R3,0

R3,3

vi = {x, y, z, }

PR-star Octree

 “Topology through space”

 A spatial data structure for querying topological connectivity

 Augment PR octree with the set of tetrahedra

from the mesh that are incident in its vertices

 i.e. the tetrahedra in the star of its vertices

Generation of PR-star
Three steps

 Input is soup of tetrahedra defining a tetrahedral mesh Σ

Step 1: Vertices

 Create a PR octree N on vertices V of mesh

 Based on user selected bucket threshold kv

Step 2: Tetrahedra

 Add tetrahedra T to appropriate leaf nodes of N

Step 3: Spatial sort

 Reorganize V and T based on spatial sorting induced by N

 Each node in N indexes a contiguous range of vertices in V

 Can be encoded via two indices vstart and vend

 For T we store a pointer to a list of tetrahedra indices

PR-star Octree
Representation

Encodes: geometry of the mesh [3 pointers]

Encodes: four indices inV of its vertices [4 pointers]

Encodes: hierarchical octree information [3 pointers]

 range of vertices (vstart ,vend) [2 pointers]

 pointer to list of incident tetrahedra [2 pointers]

PR-star Octree
Representation

Encodes: geometry of the mesh [3 pointers]

Encodes: four indices inV of its vertices [4 pointers]

Encodes: hierarchical octree information [3 pointers]

 range of vertices (vstart ,vend) [2 pointers]

 pointer to list of incident tetrahedra [2 pointers]

Lists of tetrahedra:

 Each tetrahedron appears in

• At least one octree node

• At most four octree nodes

χ – Average number of lists in which

a tetrahedron appears, where

 1 ≤ χ ≤ 4

Evaluation

 Indexed Tetrahedral Mesh Representation

 Fixed cost of both data structures

 Total 4|T| + 3|V| ~ 27|V|

 IA data structure (extended)

 Topological: 4 |T| + 3|V| ~ 25|V|

 Total: 8 |T| + 4|V| ~ 52|V|

 PR-star data structure

 Topological: χ |T| + 7|N| ~ 13|V|

 Total: 8 |T| + 4|V| ~ 40|V|

Simplifying assumptions: (see paper for details)

 |T| ~ 6 |V| |N| ~ |V| / kv χ ~ 2 kv ≥ 7

Comparison

~50% topological

~80% total storage

PR-star Octree:
Example

 F117 tetrahedral mesh

 |V| = 48.5 K

 |T| = 240 K

 IA storage: (20.8; 43.6)

kv = 50

 χ = 2.6; |N| = 4 K

 Storage: (12.8; 35.6)

kv = 100

 χ = 2.2; |N| = 1.9 K

 Storage: (10.9; 33.7)

kv = 200

 χ = 2.0; |N| = 1.4 K

Storage: (10.0 ; 32.8)

Applications of PR-star
General Strategy

 Streaming algorithm

 Iterate through octree nodes

 For each leaf octree node

 Step 1: Build application-dependent local data structure

 Step 2: Process mesh locally

 Step 3: Discard local data structure

 Cost of building data structures is amortized over

multiple local operations

Local discrete curvature estimates

 For terrain

 Elevations at samples in 2D domain

provide embedding as 3D TIN

 Curvature is concentrated in vertices

 Depends on geometry of its star

 e.g. angle deficit between 2D and 3D [Aleksandrov:1957]

 For volume data

 Scalar values at samples in 3D domain

provide embedding as 4D hypersurface

 Curvature is concentrated in vertices

 Depends on geometry of its star

 e.g. angle deficit between 3D and 4D [Mesmoudi et al.:2008]

A

B
C

B'

C '

b
c

a

O

Results
Timings for generating VT and distortion

 Compared to IA data structure

 Key observations

 Building VT is always faster for PR-star

 Amortized cost over entire mesh

 For small meshes with small kv

 Distortion computation is faster with IA

 Value of χ plays a dominant role here

 As mesh size increases, and as kv increases

 Distortion is faster with PR-star

 Trend: Effectiveness of PR-star increases with mesh size

Application
Mesh simplification

 Many mesh generation processes oversample the field

 Simplification algorithms are critical to downstream

processing but are resource intensive

 Local mesh modifications require neighborhoods of vertices

 Better results are obtained by ordering the simplifications

Local simplification
Half-edge collapse

 Simplify edge e: (w,v)

 Requires:

 VT relation for vertex v

 VT relation for vertex w

 ET relation for edge e

 Steps:

1. Delete tetrahedra in ET – applies to T

2. Modify vertices of tetrahedra in VT(v) – applies to V

3. Delete vertex v – applies to V

4. Add tetrahedra in VT(v) to VT(w) and remove ET(e)

 applies to local data structure

5. Remove VT(v) – applies to local data structure

Simplification Algorithm

 Repeat the following until there is not change

 ALGORITHM: SIMPLIFYMESH()

 for each node n of N

 Generate VT relation of all vertices vn

 Enqueue all edges to be checked for collapse

 while (queue is not empty)

 Edge e = top element of queue

 if (e passes test for simplification)

 EDGECOLLAPSE (e)

 SIMPLIFYOCTREE(N) // by merging sibling leaf nodes

Results

 Compare PR-star with different kv values

 Special case: kv = ∞

 Octree only has a single node

 Summary:

 Similar simplification results

 Around the same number of tetrahedra removed

 In around the same amount of time (± 20%)

 using < 1% of the memory

Trend: Better results for larger meshes and larger values of kv

Discussion

 Introduced PR-star Octree for tetrahedral meshes

 Spatio-Topological approach

 Spatial index “for free”

 One of the difficulties in topological data structures

on spatial data is finding the initial vertices

 Simple global data structure

 Optimal local data structures

 Not forced to decide in advance which operations

(e.g. incidence, adjacency) to optimize

 Efficiently build the data structure at runtime

without worrying (too much) about memory consumption

 Results improve with increased mesh resolution

Limitations

 Only works for spatial meshes

 Use traditional topological data structure

for abstract complexes

 Does not replace spatial data structures

 Not optimized for general spatial queries

 E.g. point location (find tetrahedron containing a point)

 Use PM-family of meshes here

 But can handle range queries

Future work

 Tuning for parameter kv

 Preliminary results: kv ~ 600-800 appears to be the sweet spot

 Significantly smaller octrees

 More time to build the local data structures

but less time to traverse the octree

 Not “too much” extra time to generate the local data structure

 Cache-based algorithms for non-local processing of mesh

 e.g. simplification of edges spanning two octree nodes

 Use a cache of expanded nodes

 Preliminary results: Around 2% of nodes is sufficient for best results

 Exploit inherent parallelism of data structure

Thank you

 Questions? Comments?

 Anonymous reviewers

 Funding Sources
 NSF Grant IIS-1116747

 Italian MUIR-PRIN 2009

 Paola Magillo

 Mesh sources
AIM@Shape, Volvis

C. Silva, R. Haimes

