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THE PR-STAR OCTREE: 



Motivation 

 Tetrahedral meshes 

 Increasingly important for analysis  

and visualization of scientific datasets 

 Captured/simulated  at  

increasingly fine resolution 

 Mesh connectivity 

 Important for many tasks that process the mesh 

 Navigation, visibility, morphology, discrete curvature estimates 

ray tracing/path following, simplification and repair, etc… 

 Expensive to encode 

 Representations typically are catered to needs of application 

 Processing rates (CPU/GPU) increasing faster than memory 

 Favor reductions in memory over those in computing 



PR-star Octree 
Contributions 

 “Topology through space” 

 Topological connectivity queries  

through spatial index on embedding space 

 Encode just enough information to enable efficient  

reconstruction of all topological relations 

 Allows optimal application-dependent  

local data structures to be generated at runtime 

 Construction costs amortized over multiple coherent queries 

 Streaming algorithms over dataset 

 Boundary determination,  local curvature estimates,  simplification 

 Many more… 
 

 Benefits of this representation increase with dataset size 

 



Related Work 

 Spatial data structures  

 Focus is on efficient spatial queries 

 e.g.  point location, (k)- nearest neighbor query 

 Points:  

 PR- quadtrees, octrees and kd-trees [Samet:2006] 

 Polygons, edges and graphs; Triangles:  

 PM-family of quadtrees –  PM1-,  PM2-,  PM3-, PMR-   

 Tetrahedral meshes [De Floriani et al.:2010] 

 Topological data structures 

 Focus is on efficient connectivity queries 

 Incidence-based – IG [Edelsbrunner:1987] 

 Adjacency-based – IA [Paoluzzi:1993;  Nielson:1997]  

 Spatial index on triangle mesh for out-of-core  

processing [Cignoni:2003] or for expensive processing [Dey et al.: 2010] 



Talk overview 

Background PR-star Octree 
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Applications 



Region Octrees 

 Hierarchical domain decomposition 

 Regular refinement 

 Each cubic parent node is replaced by 

eight children nodes covering its domain 

 Root node 

 Cubic node covering entire domain 

 Leaf node 

 Cubic node without children 

 Non-leaf nodes are called internal nodes 

Parent (1 pointer) 

Children (1 pointer) 



PR Octree: 
Point Region Octree 

 Region octree used as spatial index on a set of points 

 Points are uniquely indexed by a single leaf node 

 Bucket threshold kv  

 Used to decide when to split a node 

 Decomposition entirely dependent on kv 

 A node is considered full when it indexes kv points 

 Redistribute points to children upon insertion into full leaf node 

kv = 6 



PR Octree: 
Representation 

 An array of points in R3 – V 

 A set (array) of octree nodes – N  

 Each leaf node n in N indexes the set  

of at most kv points from V that lie within its domain 



Topological Connectivity Relations 

 Fundamental connectivity primitives for mesh elements 
 

Boundary relations – Rp,q (p<q) 

 Set of q-simplices that are a face of a given p-simplex 

 e.g.  R3,0 is the Tetrahedron-Vertex relation 

 

Co-boundary relations – Rq,p (p<q) 

 Set of simplices that have a given simplex as a face 

 e.g.  R0,3 is the Vertex-Tetrahedron relation 

 The tetrahedra in the star of v 
 

Adjacency relations – Rp,p  

 Set of p-simplices that adjacent to a given simplex  

along a p-1 face (p>0) or an edge (p=0) 

 e.g.  R3,3 is the Tetrahedron-Tetrahedron relation 

R2,3 

R3,2 
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Topological Data Structures 

 Explicitly encode a subset of the topological relations 

 Implicitly encode a (larger) subset of the relations 

 Reconstruct relevant neighborhoods from  

encoded relations at runtime 
 

 Application-dependent data formulations 

 Incidence-based data structures 

 e.g. Incidence Graph  [Edelsbrunner:1987] 

 Adjacency-based data structures 

 e.g. Indexed data structure with Adjacency (IA)  [Paoluzzi et al:1993] 

 

 Adjacency-based data structures more compact when we 

are mainly interested in top cells [DeFloriani and Hui : 2006] 



Indexed tetrahedral mesh 

 Array of vertices V 

 Each vertex vi encodes a position (x,y,z) 

and possibly other attributes 

 Array of tetrahedra T 

 Each tetrahedron tj encodes the index  

in V of its vertices and possibly other attributes 

vi = {x, y, z} 

ti = {iv0, iv1, iv2, iv3} 

R3,0 



IA data structure:  
Indexed tetrahedral mesh with Adjacencies 

 Array of vertices V 

 Encodes position of each vertex 

 Encodes a single incident tetrahedron in T 

 Array of tetrahedra T 

 Encodes indices of four vertices in V 

 Encodes indices of four adjacent tetrahedra in T 

                   it0  

ti ={           }  iv0, iv1, iv2, iv3 

  it0, it1, it2, it3 

R3,0 

R3,3 

vi = {x, y, z,     } 



PR-star Octree 

 “Topology through space” 

 A spatial data structure for querying topological connectivity 
 

 Augment PR octree with the set of tetrahedra  

from the mesh that are incident in its vertices 

 i.e.  the tetrahedra in the star of its vertices 



Generation of PR-star 
Three steps 

 Input is soup of tetrahedra defining a tetrahedral mesh Σ 
 

Step 1: Vertices 

 Create a PR octree N on vertices V of mesh 

 Based on user selected bucket threshold kv 
 

Step 2: Tetrahedra 

 Add tetrahedra T to appropriate leaf nodes of N 
 

Step 3: Spatial sort 

 Reorganize V and T based on spatial sorting induced by N 

 Each node in N  indexes a contiguous range of vertices in V  

 Can be encoded via two indices vstart and vend  

 For T we store a pointer to a list of tetrahedra indices 



PR-star Octree 
Representation 

Encodes: geometry of the mesh                   [3 pointers] 

Encodes: four indices inV of its vertices        [4 pointers] 

Encodes: hierarchical octree information              [3 pointers] 

             range of vertices (vstart ,vend )                [2 pointers] 

             pointer to list of incident tetrahedra       [2 pointers] 



PR-star Octree 
Representation 

Encodes: geometry of the mesh                   [3 pointers] 

Encodes: four indices inV of its vertices        [4 pointers] 

Encodes: hierarchical octree information              [3 pointers] 

             range of vertices (vstart ,vend )                [2 pointers] 

             pointer to list of incident tetrahedra       [2 pointers] 

Lists of tetrahedra: 
 

  Each tetrahedron appears in 

•    At least one octree node 

•    At most four octree nodes 

 

χ – Average number of lists in which 

a tetrahedron appears, where 

 

                        1 ≤  χ  ≤ 4 



Evaluation 

 Indexed Tetrahedral Mesh Representation 

 Fixed cost of both data structures 

 Total          4|T| + 3|V|  ~ 27|V| 
 

 IA data structure (extended)  

 Topological:   4 |T| + 3|V|   ~ 25|V| 

 Total:      8 |T| + 4|V|  ~ 52|V| 
 

 PR-star data structure 

 Topological:    χ |T| + 7|N|  ~ 13|V| 

 Total:       8 |T| + 4|V|  ~ 40|V| 

Simplifying assumptions: (see paper for details) 

  |T| ~ 6 |V|  |N| ~ |V| / kv    χ ~ 2        kv  ≥ 7 

Comparison 

~50% topological 

~80% total storage 



PR-star Octree: 
Example 

 F117 tetrahedral mesh 

 |V| = 48.5 K  

 |T| = 240 K 

 IA storage:  (20.8; 43.6) 

 

kv = 50 

  χ = 2.6; |N| = 4 K 

 Storage: (12.8; 35.6) 

kv = 100 

  χ = 2.2; |N| = 1.9 K 

 Storage: (10.9; 33.7) 

kv = 200 

  χ = 2.0; |N| = 1.4 K 

Storage: (10.0 ; 32.8) 



Applications of PR-star 
General Strategy 

 Streaming algorithm  

 Iterate through octree nodes 

 

 For each leaf octree node 

 Step 1: Build application-dependent local data structure 

 Step 2: Process mesh locally 

 Step 3: Discard local data structure 

 

 Cost of building data structures is amortized over 

multiple local operations 



Local discrete curvature estimates 

 For terrain 

 Elevations at samples in 2D domain  

provide embedding  as 3D TIN 

 Curvature is concentrated in vertices 

 Depends on geometry of its star 

 e.g.  angle deficit between 2D and 3D [Aleksandrov:1957] 

 

 For volume data 

 Scalar values at samples in 3D domain 

provide embedding as 4D hypersurface 

 Curvature is concentrated in vertices 

 Depends on geometry of its star 

 e.g.  angle deficit between 3D and 4D [Mesmoudi et al.:2008] 
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Results 
Timings for generating VT and distortion 

 Compared to IA data structure 

 

 Key observations 

 Building VT is always faster for PR-star 

 Amortized cost over entire mesh 

 For small meshes with small kv  

 Distortion computation is faster with IA 

 Value of χ plays a dominant role here 

 As mesh size increases, and as kv increases 

 Distortion is faster with PR-star 

 

 Trend: Effectiveness of PR-star increases with mesh size 



Application 
Mesh simplification 

 Many mesh generation processes oversample the field 

 Simplification algorithms are critical to downstream 

processing but are resource intensive 

 Local mesh modifications require neighborhoods of vertices 

 Better results are obtained by ordering the simplifications 



Local simplification 
Half-edge collapse 

 Simplify edge e: (w,v) 

 Requires: 

 VT relation for vertex v 

 VT relation for vertex w 

 ET relation for edge e 

 Steps: 

1. Delete tetrahedra in ET – applies to T 

2. Modify vertices of tetrahedra in VT(v) – applies to V 

3. Delete vertex v – applies to V 

4. Add tetrahedra in VT(v) to VT(w) and remove ET(e) 

 applies to local data structure 

5. Remove VT(v) – applies to local data structure 

 



Simplification Algorithm 

 Repeat the following until there is not change 

 

 ALGORITHM: SIMPLIFYMESH() 

 for each node n of N 

 Generate VT relation of all vertices vn 

 Enqueue all edges to be checked for collapse 

 while ( queue is not empty ) 

 Edge e = top element of queue 

 if (e passes test for simplification) 

 EDGECOLLAPSE (e) 

 

 SIMPLIFYOCTREE( N )   // by merging sibling leaf nodes 



Results 

 Compare PR-star with different kv values 

 Special case: kv = ∞ 

 Octree only has a single node 

 

 Summary: 

 Similar simplification results 

 Around the same number of tetrahedra removed 

 In around the same amount of time (± 20%) 

 using < 1% of the memory 

 

 

Trend:  Better results for larger meshes and larger values of kv 

 



Discussion 

 Introduced PR-star Octree for tetrahedral meshes 

 Spatio-Topological approach  

 Spatial index “for free” 

 One of the difficulties in topological data structures  

on spatial data is finding the initial vertices 

 Simple global data structure 

 Optimal local data structures 

 Not forced to decide in advance which operations  

(e.g. incidence, adjacency) to optimize 

 Efficiently build the data structure at runtime 

without worrying (too much) about memory consumption 

 Results improve with increased mesh resolution 



Limitations 

 Only works for spatial meshes 

 Use traditional topological data structure  

for abstract complexes 

 

 Does not replace spatial data structures 

 Not optimized for general spatial queries 

 E.g. point location (find tetrahedron containing a point) 

 Use PM-family of meshes here 

 But can handle range queries 



Future work 

 Tuning for parameter kv 

 Preliminary results: kv ~ 600-800 appears to be the sweet spot 

 Significantly smaller octrees 

 More time to build the local data structures  

but less time to traverse the octree 

 Not “too much” extra time to generate the local data structure 

 Cache-based algorithms for non-local processing of mesh 

 e.g.  simplification of edges spanning two octree nodes 

 Use a cache of expanded nodes 

 Preliminary results: Around 2% of nodes is sufficient for best results 

 Exploit inherent parallelism of data structure 
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