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Abstract
Interval volumes are a generalization of isosurfaces that represent the set of points between two surfaces. In this
paper, we present a compact multi-resolution representation for interval volume meshes extracted from regularly
sampled volume data sets. The multi-resolution model is a hierarchical tetrahedral mesh whose updates are based
on the longest edge bisection (LEB) subdivision strategy for tetrahedra. Although our representation is decoupled
from the scalar field, it maintains the implicit structure of the LEB model to efficiently encode mesh updates.
Our representation efficiently supports selective refinement queries and requires significantly less storage than an
encoding of the interval volume mesh at full resolution.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Hierarchy and geometric
transformations I.3.6 [Computer Graphics]: Graphics data structures and data types

1. Introduction

An interval volume is a volumetric mesh representation that
generalizes the notion of isosurfaces. Rather than represent-
ing a single surface within a scalar field, an interval vol-
ume represents the region enclosed between two isosurfaces.
Thus, it is a hybrid between direct and indirect volume ren-
dering approaches since it is able to exploit the spatial co-
herence inherent in the field. Since these meshes span an
interval of values, they are less sensitive to small fluctua-
tions in the scalar field, such as those due to noise or sam-
pling artifacts and are especially relevant in medical appli-
cations, where object boundaries can cover multiple values.
However, since it is a volumetric approach, the sizes of ex-
tracted interval volume meshes can quickly exceed the pro-
cessing capabilities of commodity computers. Thus, a multi-
resolution model can help in locating regions relevant to
specific tasks such as rendering and mesh extraction. Multi-
resolution models have been developed in the literature for
representing 3D scalar fields for computational and storage
efficiency, mostly based on nested hexahedral or tetrahedral
meshes. The multi-resolution model efficiently supports the
generation of simplified representations of the field (as iso-
surfaces or as meshes for direct volume rendering) at both
uniform and variable resolution according to a user-selected
accuracy criterion. Our purpose here is not only to generate
adaptive representations of an interval volume, but also to

produce a multi-resolution model of the interval volume for
which we propose a compact and efficient encoding. This
enables efficient inspection and manipulation of an interval
volume at different resolutions without the need to maintain
the entire multi-resolution model of the scalar field. We con-
sider as a representation of the underlying field a multires-
olution model based on a nested tetrahedral mesh, that we
call a Hierarchy of Diamonds (Section 4). The hierarchy of
diamond representation is a variant of longest edge bisec-
tion (LEB) subdivision whose modeling primitive, the dia-
mond, encodes the collection of tetrahedra sharing a com-
mon longest edge rather than individual tetrahedra. We pro-
pose an efficient way to represent a diamond in terms of
the coordinates of the midpoint of its longest edge that we
will use also for encoding the multi-resolution model of the
scalar field (Section 5).

The main contribution of this paper is a novel multi-
resolution model of an interval volume, that we call a multi-
resolution interval volume mesh (Section 6), that is decou-
pled from the values of the scalar field. This model assumes a
representation of the scalar field as a hierarchy of diamonds,
and exploits this representation to produce a compact and
efficient multi-resolution description of the irregular volume
mesh subdividing the interval volume. A multi-resolution in-
terval volume mesh is obtained by encoding only those dia-
monds in the hierarchy of diamonds of the underlying field
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whose associated scalar field values contribute to the inter-
val volume. It also encodes the interval volume patches asso-
ciated with such diamonds efficiently. The multi-resolution
structure of the model, which describes the dependencies
among diamonds, is implicit (see Sections 4 and 5). The re-
sulting multi-resolution interval mesh is thus a significantly
more compact representation when compared to the encod-
ing of the interval volume mesh at full resolution. It provides
a very efficient support for selective refinement queries (Sec-
tion 7). Since it reduces both storage costs and preprocessing
times, it a very relevant tool for transmission and/or offline
inspection and rendering.

2. Background Notions

A 3D scalar field is given as a discrete set of points V in a do-
main Ω in the three-dimensional space, where one or more
field values are associated with each point of V . V plus such
field values form a volume data set. A volume data set is
modeled as a mesh formed by polyhedral cells having their
vertices at the data points along with an interpolating func-
tion defined over the cells of the mesh. We consider models
based on tetrahedral meshes, in which linear interpolation
is used over the tetrahedra forming the mesh, and which are
also conforming. i.e. meshes in which the intersection of any
two tetrahedra is either empty or it is a triangle, edge or ver-
tex belonging to the boundary of both of them. A model of a
volume data set defined on a non-conforming mesh may con-
tain cracks (and, thus, discontinuities in extracted meshes) in
correspondence to the boundary of adjacent cells of the un-
derlying mesh.

One way of visualizing volume data sets is through iso-
surfaces. The isosurface of isovalue κ passes through all
tetrahedral cells having at least one vertex whose associated
field value is greater than κ, and at least one vertex whose
value is less than κ.

An alternative method of visualizing regions of a volume
dataset is through an interval volume, which is the set of
points enclosed between two isosurfaces. Let K := [α,β] be
defined as the interval between isovalues α and β, where
α ≤ β. Then the interval volume Σ of isorange K within F ,
denoted as ΣK or Σ[α,β], is defined as

Σ[α,β] = F−1([α,β]) = {x ∈Ω(F)|α≤ F(x)≤ β}.

Once a particular isorange K is chosen, it implicitly defines
a ternary-valued scalar field RK on each vertex v ∈V whose
values are defined by the relative values of F and K, namely:

RK(v) =


−1 if F(v) < α,
0 if α≤ F(v)≤ β,
1 if β < F(v).

Consequently, an interval volume mesh is bounded by two
surfaces: the lower surface corresponds to the isosurface of

isovalue α while the upper surface corresponds to the iso-
surface of isovalue β.

A tetrahedral mesh in which the tetrahedra are defined by
the uniform subdivision of a tetrahedron into scaled copies
of it is called a nested tetrahedral mesh. A special class of
nested tetrahedral meshes are those generated by bisecting
tetrahedra along their longest edge, that we call Longest-
Edge-Bisection (LEB) meshes. The bisection rule for a tetra-
hedron t consists of replacing t with the two tetrahedra ob-
tained by splitting t along the plane defined by the middle
point of its longest edge e and the two vertices of t which are
not endpoints of e. When this rule is applied recursively to an
initial decomposition of a cubic domain into six tetrahedra
sharing a diagonal of the cube it generates three congruent
classes of tetrahedra, each with a single longest edge. We
denote the class of tetrahedra congruent to those sharing a
diagonal of the base cube as 0-tetrahedra, and the tetrahedra
congruent to the ones obtained by splitting an i-tetrahedron
as (i + 1)-tetrahedra for i ∈ {0,1}. The tetrahedra obtained
by splitting 2-tetrahedra are congruent to 0-tetrahedra. Ob-
serve that any edge e of a tetrahedron t in these meshes is
aligned with either (a) the diagonal of an axis aligned cube;
(b) the diagonal of a face of such a cube, or (c) an edge of
such a cube.

3. Related Work

Interval volumes were introduced concurrently by Fujishiro
et al. [FMS95] and by Guo [Guo95]. Guo [Guo95] intro-
duced interval sets as a bridge between direct volume ren-
dering (DVR) and indirect volume rendering (e.g. isosurface
extraction) techniques. Fujishiro et al. [FMS95, FMST96]
extend the Marching Cubes algorithm [LC87] to extract in-
terval volumes from cubic cells. Nielson and Sung [NS97]
offer a case-based lookup table for interval volumes over
tetrahedral meshes. They reduce the configuration space to
15 unique cases and provide a consistent global triangulation
of the polyhedral interval volume patches. Bhaniramka et
al. [BWC00] create interval volume cases for cubes by first
extracting an isosurface from a four dimensional hypercube
and then projecting the isosurface into an interval volume in
the cube. Zhang et al. [ZBS03] introduce a technique for ex-
tracting adaptive interval volume meshes from volume data.
Octree cells containing a boundary of the interval are trian-
gulated using a modified dual contouring technique, while
cells completely within the interval are triangulated by in-
serting Steiner points. Since a pointer-based octree is used,
this technique is likely to have problems scaling to larger
datasets.

A very large class of multi-resolution models for 3D
scalar fields is provided by nested tetrahedral meshes. LEB
meshes were introduced for domain decomposition in finite
element analysis [Mau95], and have been applied in sev-
eral applications, including scientific visualization [ZCK97,
GDL∗02]. The containment hierarchy among the tetrahe-
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dra in an LEB mesh induces a natural tree representation,
in which the nodes are tetrahedra and the two children of
a tetrahedron t are the tetrahedra generated by bisecting
t [ZCK97, GP00, GDL∗02]. As an LEB mesh can be non-
conforming, the issue here is to extract conforming meshes.
Since tetrahedra in this model are subdivided along a longest
edge, the cracking problem can be avoided by simultane-
ously subdividing all tetrahedra sharing that edge. Gerstner
et al. [GP00] pre-compute a saturated error for each vertex
splitting a tetrahedron in an LEB mesh. The saturation con-
dition implicitly forces all longest-edge neighbors to split,
thus ensuring a conforming mesh. This scheme does not en-
able general navigation on the extracted meshes but it is suit-
able for parallel implementation and front-to-back traver-
sal. Cases describing the topology of isosurfaces within dia-
monds were also introduced in [GP00].

An alternative approach is to directly encode the set of all
tetrahedra sharing a longest edge. Gregorski et al. [GDL∗02]
denote such a primitive as a diamond, and associate each dia-
mond with the central vertex of its longest edge. This method
was extended to time-varying datasets in [GSDJ04], where
the temporal coherence is exploited for generating approxi-
mations to isosurfaces between consecutive time steps and in
compressing the dataset. A diamond-based scheme was also
used by Takahashi et al. [TTNF04] to accelerate construction
of contour trees.

4. A Hierarchy of Diamonds

In an LEB mesh Σ, all tetrahedra sharing a common longest
edge are called a cluster or a diamond [DM02]. We call the
longest edge the spine of the diamond, and the midpoint vc
of the spine the central vertex of the diamond. Thus, dia-
monds can be uniquely identified by their spine or, equiv-
alently, by their central vertex. We distinguish between the
two vertices of a diamond’s spine, which are common to all
tetrahedra in the diamond and its remaining vertices, which
we denote as the diamond’s belt vertices. Figure 1 shows
examples of diamonds: vertex vc denotes the central vertex,
the spine vertices are the extreme vertices of the spine (col-
ored brown, red and green, respectively), and the remaining
vertices (light blue) are the belt vertices.

Since each tetrahedron in a diamond mesh has a sin-
gle longest edge, the tetrahedra in a diamond all belong to
the same class of tetrahedra (see Section 2). As a conse-
quence, there are three different congruence classes of di-
amonds: those with spines aligned with cube diagonals (0-
diamonds, see Figure 1(a)), with face diagonals of a cube (1-
diamonds, see Figure 1(b)) or with cube sides (2-diamonds,
see Figure 1(c)). An i-diamond, for i∈ {0,1,2} is formed by
{6,4,8} tetrahedra, and contains {8,6,10} vertices, respec-
tively.

Given a regular volume data set, let us consider the collec-
tion T of all the tetrahedra generated from the initial subdivi-
sion of the cubic domain through the longest edge bisection

(a) 0-diamond (b) 1-diamond (c) 2-diamond

vc vc
vc

Figure 1: The three classes of diamonds. Central vertices,
(hollow circles labeled vc) are located at the midpoint of
spines whose extreme vertices are the spine vertices. All
other vertices (light blue) are belt vertices. (a) The spine of
a 0-diamond (brown edge) is a cube diagonal, (b) the spine
of a 1-diamond (red edge) is a square diagonal and (c) the
spine of a 2-diamond (green edge) is a cube edge.

rule. If we consider the collection ∆ of all the diamonds as-
sociated with the longest edges of the tetrahedra in T , the
containment relation between the tetrahedra in T induces a
parent-child dependency relation over set ∆. A diamond δ

′ is
a parent of another diamond δ if and only if some tetrahedra
in δ are created by the splitting of at least one tetrahedron in
δ
′. If δ

′ is a parent of δ then δ is called a child of δ
′.

The set ∆ with the parent-child dependency relation de-
fined over ∆ can be easily shown to define a partial order
relation and thus it can be described as a Directed Acyclic
Graph (DAG) (see [DM02] for a proof). The DAG describ-
ing the dependencies between diamonds has a fixed struc-
ture. With the exception of diamonds whose spines lie on
the domain boundary, 0-diamonds always have 3 parents and
6 children, while 1-diamonds have 2 parents and 4 children
and 2-diamonds have 4 parents and 8 children.

In the literature, a hierarchy of diamonds is built on a grid
of dimensions (2N + 1)3, where N is the maximum level,
LEVELMax, of the hierarchy ∆. Since the coordinates of di-
amonds can be inferred from their locations within the grid,
they do not need to be explicitly encoded, and it is sufficient
to encode the scalar and error values at each vertex of the
grid. For each vertex v, the error associated with v is the er-
ror for approximating the domain of the original scalar field
by the diamond δ whose central vertex is v. Specifically, in a
pre-processing step, we assign to v the maximum of the in-
terpolation errors calculated at all points in the domain of its
associated diamond δ. For efficiency in extracting meshes,
the minimum and maximum field values within each dia-
mond δ are also maintained.

5. Representing Diamonds

We describe here a novel interpretation of the binary rep-
resentation of a diamond’s central vertex, vc, which pro-
vides all information required to compute the local mesh
topology of a diamond, including the location of its ver-
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tices, and the central vertices of its parents and children in
terms of scaled offsets from vc. Thus, as opposed to previ-
ous schemes [GDL∗02] which required explicit storage of a
diamond’s type and level, the only geometric overhead as-
sociated with a diamond is its central vertex (used to index
the diamond) and a few bits of bookkeeping that we use for
selective refinement queries.

The level of an i-diamond δ is equal to the number of i-
diamond ancestors of δ in the DAG, i.e. its depth in the DAG
modulo three. The scale σ of a diamond δ is defined in terms
of its level as σδ = LEVELMax−LEVELδ, and is encoded as
the minimum of the number of trailing zeros among all co-
ordinates of vc (see σ in eq. 1). Consequently, the rightmost
σ bits of vc are all zero, but at least one of the bits at location
σ+1 is nonzero.

vc =


vx = x1x2 . . .xn dx1 dx2 00 . . .0

vy = y1y2 . . .yn dy1 dy2 00 . . .0

vz = z1z2 . . .zn dz1 dz2︸ ︷︷ ︸
τ

00 . . .0︸ ︷︷ ︸
σ

 (1)

We use the two bits at positions σ+1 and σ+2 to uniquely
associate a type with each diamond (i.e. τ in Eq. 1). Since
diamonds in ∆ have three coordinates, and τ has two bits
for each coordinate, there are (22)3 = 64 possible diamond
types. However, the restriction that at least one of the right-
most bits of τ is nonzero reduces this number by eight, yield-
ing 56 unique diamond types. The class of δ is encoded
within τ by the number of zeros at position σ + 1 of vc. The
remaining n = LEVELMax− (σ +2) bits in each component
of vc are used only to distinguish diamonds.

A diamond’s type τ and its scale σ are used in conjunction
with a table of unscaled offsets from its central vertex to find
the vertices of δ as well as its parents and children at runtime.
These offsets vectors all have components fi ∈ {−1,0,1}.
Since all vertices of the diamond mesh have integer coor-
dinates, and there are only 56 types of diamonds, we pre-
calculate these offsets and access them via a lookup table.
This table is generated by using an LEB tetrahedral subdi-
vision scheme (such as the one given in [Mau95]). When
subdividing tetrahedra, we keep track the central vertices of
parent and children tetrahedra, and use Equation (1) to find
the unscaled offsets between them. The explicit location of
vertex p of diamond δ at scale σ and at unscaled offset ~f is
computed at runtime as:

p = vc +2σ ∗ ~f . (2)

Example Consider the diamond δ (in 2D) whose central ver-
tex vc has coordinates (72,20). From Equation 1, we deter-
mine is scale, σ, and type, τ, as follows:

vc =

[
72

20

]
=

[
100 10 002

001 01 002

]
=

 100 10 00
001 01︸︷︷︸

τ

00︸︷︷︸
σ

 .

Thus, σ = 2 and τ = (102,012) = (2,1). Since there is a

(-4,0)(-4,0)(-4,0)(-4,0)(-4,0)(-4,0) (4,0)(4,0)(4,0)(4,0)(4,0)(4,0)
(72,20)(72,20)

Figure 2: The vertices, parents and children of a diamond
δ are located at scaled offsets from its central vertex. These
offsets are accessed from a table and indexed by the type τ of
δ. Here, the parents of a diamond with central vertex (72,20)
are located four units away on the x-axis.

single 0-bit at position σ + 1, δ is a 1-diamond. We can use
Equation (2) to find the central vertex of δ’s parent diamond
δp located at unscaled offset ~f = (−1,0) (see Figure 2). We
first scale ~f by 2σ and then add the result to vc, so

vc(δp) = (72,20)+22× (−1,0) = (68,20).

6. A Compact Representation for Multi-resolution
Interval Volume Meshes

In this Section, we introduce the multi-resolution model for
an interval volume mesh and a compact representation for
such models based on the diamond encoding introduced in
the previous section. Recall that an interval volume mesh
ΣK with isorange K := [α,β] extracted from the scalar field
F encodes the set of points from the domain Ω between iso-
surfaces α and β. A multi-resolution representation for ΣK
consists of a coarse representation of ΣK , a set of refinement
modifications, and a dependency relation among the modifi-
cations. When the scalar field is modeled by a hierarchy of
diamonds ∆, the coarse mesh is the interval volume patch
associated with the root diamond, the modifications corre-
spond to the subdivision of diamonds from the hierarchy that
are intersected by the interval volume, and the dependency
relation is induced by the parent-child relation in the dia-
monds of ∆. As such, a multi-resolution interval volume can
be described by a DAG of diamonds, which is a subgraph of
the DAG describing ∆. The resulting multi-resolution model
can be encoded as a Multi-Tessellation, in which the DAG
is implicitly encoded and the modifications are stored as the
collection of tetrahedra in the interval volume generated by
diamond splitting [Mag00].

In our compact representation presented here, we exploit
the fact that the modifications are generated from a hierarchy
of diamonds and that only a subset of the original diamonds
are involved. Specifically, we encode only those diamonds
that have a non-empty intersection with the interval volume
at any level, plus those that have at least one non-empty de-
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scendant. Such diamonds are considered relevant to the iso-
range K. Since all boundary vertices of ΣK lie on edges of ∆,
they can be encoded using interpolation coefficients. Since
internal vertices of ΣK coincide with vertices of ∆ they do
not require explicit storage. Thus, our multi-resolution rep-
resentation of ΣK consists of the set of relevant diamonds as
well as an array of interpolation coefficients corresponding
to the boundary vertices of ΣK , i.e. those lying on the upper
or lower surface of ΣK .

To define a compact description of the modifications in a
multi-resolution interval volume mesh we need to analyze
how an interval volume mesh is locally updated in corre-
spondence to a diamond split. When subdividing a diamond
δ, its spine is removed, a new vertex is inserted at its cen-
tral vertex vc and edges connecting vc to all vertices of δ are
inserted (see Figure 3). Since these new edges are entirely
within the domain of a single diamond, they can be uniquely
associated with that diamond. Let us denote these new edges
as the subdivision edges of δ. We observe that the vertices,
edges and faces on the boundary of δ are unaffected by the
subdivision.

(a) Before Subdivision (b) After Subdivision

Figure 3: Subdivision of a diamond (in 2D). When a dia-
mond δ subdivides, its spine (red edge in (a)) is removed, a
vertex (light blue) is inserted at its center and edges (blue)
are inserted from the center to all vertices of δ.

(a) Before Subdivision (b) After Subdivision

Figure 4: Updating an interval volume patch (in 2D).
Diamond-based updates to the interval volume remove ver-
tices lying on the diamond’s spine (red circles in (a)) and
add vertices lying on the subdivision edges of the diamond
(blue circles in (b)).

We denote the intersection of a diamond δ and an interval

volume mesh ΣK as an interval volume patch and observe
that the edges of δ that are intersected by ΣK (and hence the
vertices of the local patch) are entirely determined by RK ,
that is, the relative values of the field F at the vertices of δ

with respect to isorange K (see Section 2). Given the interval
volume patch associated with δ, a local update requires only
the removal of the patch vertices lying on δ’s spine, the in-
sertion of patch vertices lying on the subdivision edges of δ

and a local re-triangulation of the patch (see Figure 4). Thus,
given the interval volume patch associated with an unsubdi-
vided diamond δ with central vertex vc, an update requires
only the value of RK at vc as well as the interpolation coef-
ficients of the boundary vertices of ΣK along the subdivision
edges of δ. These coefficients are stored in a global array to
ensure that updates have a fixed size. Since the number of
intersected subdivision edges of δ is uniquely determined by
the values of RK , each update requires only a single pointer
into this array.

An update uδ associated with a diamond δ ∈ ∆, is indexed
using the coordinates of its central vertex vc which incurs a
six byte overhead per update. Also, to support selective re-
finement queries, the approximation error of uδ is encoded
as well. The approximation error of uδ is the maximum inter-
polation error over all points of V within the domain of δ (as
described in Section 4) and is quantized to 14 bits per update.
The relative value RK of vc requires 2 bits, and the pointer
into the interpolation array requires 4 bytes. Finally, the in-
terpolation coefficients are quantized to 8 bits each. Thus,
our multi-resolution interval volume representation requires
a single byte per vertex and 12 bytes for each diamond-based
update.

7. Querying Multi-Resolution Interval Volumes

The basic query on a multi-resolution model is selective re-
finement, which consists of extracting the mesh of smallest
size that satisfies an application-dependent predicate called
the Level-Of-Detail (LOD) criterion. An LOD criterion φ

defines whether a given update is needed to achieve the re-
quired mesh resolution and can depend on factors such as
approximation error, scalar value, spatial location, distance
to the view point and projected screen error of an update. Se-
lective refinement is performed through a top-down traversal
of the DAG describing the multi-resolution model, and en-
sures that all ancestors of a diamond are subdivided before
subdividing the diamond. Numerous variations of selective
refinement exist, including those that allow incremental and
priority-based refinement of meshes. In the case of multi-
resolution interval volume meshes we need to show how we
triangulate the interval volume patch associated with a dia-
mond δ and how this triangulation is updated after the sub-
division of δ.

The triangulation of an interval volume patch associated
with a diamond δ is determined by the relative values RK
of the vertices of δ, which, when taken together, we denote
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as the bitpattern of δ. We have adapted the tetrahedra-based
cases of Nielson and Sung [NS97] to triangulate the inter-
val volume patches within diamonds. This technique guaran-
tees a globally consistent tetrahedralization of the polyhedral
patch through a lexicographic ordering of the patch vertices.
Consequently, for each diamond δ in an approximation Σ

′
K

of ΣK , a globally consistent triangulation of Σ
′
K is achieved

through table lookups on the bitpattern of δ.

As indicated in the previous section, updating an inter-
val volume patch associated with a diamond δ with central
vertex vc requires the generation of patch vertices on the in-
tersected subdivision edges of δ as well as a re-triangulation
of the patch. Given the update uδ associated with the sub-
division of diamond δ, we first augment the bitpattern of δ

with the relative value RK of vc. Next, we use the pointer
into the interpolation array to find the set of interpolation
coefficients required to generate the new vertices on the sub-
division edges of δ. The augmented bitpattern is sufficient
to determine the number of new vertices as well their cor-
responding edges. Finally, for each intersected subdivision
edge with vertices v and vc and interpolation coefficient γ, a
new vertex p is generated as p = γ ·v+(1− γ) ·vc.

To simplify the representation, we only allow unsubdi-
vided diamonds to contribute to the approximated interval
volume mesh Σ

′
K . Thus, upon subdivision of a diamond δ,

portions of the new interval volume patch are distributed
among the children of δ. This is accomplished via a map-
ping between the edges and vertices of parent and children
diamonds that we denote as duets (see Figure 5). For a dia-
mond δc with k parents, we can split the domain of δc into
k pairs of tetrahedra, the duets, such that both tetrahedra in
each duet were generated during the splitting of a single par-
ent diamond of δc. A duet between non-boundary diamonds
δp and δc consists of two adjacent tetrahedra whose shared
face includes the two vertices of δc’s spine and the central
vertex of δp and contains 5 vertices and 9 edges (see Fig-
ure 5). Boundary duets have only a single tetrahedron. Bit

A
B

A
B

δp δcDuet

vc

Figure 5: A parent-child duet maps the common edges and
vertices of a subdivided diamond δp and its child diamond
δc. The common face of the duet contains the central vertex
vc of δp (red vertex) and the two spine vertices of δc (green
vertices). The map contains 5 vertices and 9 edges.

patterns corresponding to the vertex mappings of a duet are
propagated to children diamonds using a few efficient bit

operations, and surface vertices are passed to children dia-
monds using the edge mappings of duets.

8. Experimental Results

In this Section, we present experimental results demonstrat-
ing the compactness and efficiency of our multi-resolution
interval volume representation. First we compare our rep-
resentation to the interval volume tetrahedral mesh at full
resolution described as an indexed data structure. In an in-
dexed tetrahedral mesh, vertices are represented by their
three floating point coordinates and tetrahedra by the in-
dices of their four vertices. Thus, each vertex requires 12
bytes and each tetrahedron 16 bytes. Recall that our compact
multi-resolution interval volume representation requires one
byte per vertex and 12 bytes per update/diamond. We exper-
imented with intervals of varying sizes on several different
types of datasets, including distance fields (Bunny dataset),
as well as single byte (engine, neghip) and double byte vol-
ume datasets (tooth, buckyball). Table 1 shows the dimen-
sions of each tested dataset as well as the isorange K and the
sizes of the two representations. It is evident from Table 1
that our multi-resolution representation requires about 1/8th

the space of the mesh at full resolution. Interestingly, this ra-
tio is consistent even when the interval is narrow (as in the
Bunny4 dataset), or it only contains a single surface (as in
Bunny3 and Bunny5 datasets). Since we often desire meshes
where the surface detail is refined, but the internal cells are
as large as possible, we used an LOD criterion φ that sub-
divides the diamonds containing boundary isovalues of the
interval K (i.e. α or β) rather than those containing only in-
ternal values of K for most of our experiments. However, the
Bunny5 example (row 5 of Table 1) uses an LOD criterion
with uniform error over the entire interval, and demonstrates
the same characteristic benefits of our method.

Table 2 compares selective refinement query times from
the hierarchy of diamonds ∆ to those of our compressed rep-
resentation Σ where the LOD criterion φ is a percentage of
the the maximum error. Our representation, on average is
noticeably quicker, and typically requires only 70-80% the
time as the hierarchy of diamonds ∆. This is most likely
due to the fact that all pertinent information can be derived
from a single access to the diamond rather than having to
access the scalar values associated with the diamond’s ver-
tices. Furthermore, the compact representation typically re-
quires only a fraction of the diamonds in ∆, and since it im-
plicitly encodes all relevant diamonds, does not require an
array of minimum and maximum values for efficiency. On
the other hand, our proposed representation is less appropri-
ate for tasks that require frequent changes to the isorange K,
such as the data exploration stage. Since relevant diamonds
at all scales of ∆ must be accessed during creation, creation
times for the multiresolution representation are of the same
order as extraction times for the 0 error mesh from the orig-
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Isorange Multires Max Res
Dataset Dims [α,β] |V | |δ| MB |V | |T | MB Savings
Bunny1 [10,10] 1.1 M 808 K 10.3 1.2 M 4.6 M 84 8.13 x
Bunny2 [0,30] 850 K 616 K 7.9 938 K 3.4 M 63 8.06 x
Bunny3 2013 [0,∞] 671 K 486 K 6.2 735 K 2.7 M 49 7.96 x

Bunny4 (Thin Shell) [-0.5,0.5] 1.3 M 548 K 7.6 1.1 M 3.2 M 61 8.1 x
Bunny5 (Uniform LOD) [0,∞] 671 K 2.3 M 27 2.6 M 14 M 238 8.81 x

Engine1 [175,256] 331 K 205 K 2.7 325 K 1.1 M 21 7.87 x
Engine2 2563 [55,175] 1.7 M 1 M 13.1 1.7 M 6.2 M 114 8.67 x

Tooth 2562x161 [440,1290] 350 K 252 K 3.2 364 K 1.3 M 24 7.57 x
Neghip 643 [59.1,124.1] 90 K 45 K .6 81 K 262 K 4.9 8.27 x

Buckyball 1283 [128,188] 595 K 316 K 4.2 553 K 2 M 37 8.82 x

Table 1: Comparison between the compact multiresolution representation and an indexed tetrahedral mesh representation.

30% 3% .3% .03% .01% 0%
∆ Σ ∆ Σ ∆ Σ ∆ Σ ∆ Σ ∆ Σ Avg. Savings

Bunny .1 .1 .43 .4 1 .74 1.2 .78 1.1 .8 1.2 .82 77%
Engine .05 .04 1.4 1.8 5.6 5 6.3 4.9 6.8 4.9 6.1 4.9 87%
Tooth .17 .13 1.7 1.6 8.9 5.7 12 6.6 12 7.3 16 7.6 66%

Neghip .12 .09 .27 .25 3.7 4.3 24 18 34 23 37 25 82%
Bucky 3.5 1.5 23 15 27 20 26 22 25 24 28 30 78%

Table 2: Comparison times (in seconds) between extracting interval volume meshes with uniform relative error from the hier-
archy of diamonds representation (∆) and from the decoupled multiresolution interval volume representation (Σ).

inal scalar field. All timing experiments were performed on
a 2 GhZ Pentium Core 2 Duo processor with 4 GB RAM.

Figure 6 shows a DVR rendering of an interval volume
mesh extracted from the engine dataset with a 1% uniform
error around the boundaries of the interval [55,175]. Fig-
ure 7 illustrates a variable resolution interval volume mesh
extacted from the bunny dataset using a region of interest
(ROI) query around the bunny’s head. Diamonds within the
ROI have an error of 0 while those outside the region can
have arbitrary error.

9. Concluding Remarks

We have presented a multi-resolution representation for in-
terval volume meshes defined on hierarchies of diamonds.
This representation uses the implicit dependency relation of
the hierarchy to yield compact meshes while enabling effi-
cient selective refinement queries. Empirically, we demon-
strated that these meshes are often more than eight times
smaller than an indexed representation of the mesh at full
resolution. We have also shown that selective refinement
queries on the multi-resolution interval volume meshes are
more efficient in terms of size and performance than queries
on the original hierarchy of diamonds.

Although the decoupled representation significantly re-
duces the storage requirements of each modification we
would like to further reduce the overhead associated with

Figure 6: Volume rendering of the Engine2 dataset with
isorange K = [55,175] and uniform error less than 1%.

each diamond. In our experiments, we observed that the hier-
archy requires storing a significant number of diamonds that
do not intersect the interval volume but are necessary since
they are ancestors of diamonds that contain pieces of the vol-
ume. We are looking into representations that avoid the need
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Figure 7: Region based variable LOD on the bunny model
(around the head) with isorange K = [0,20]. The tetrahedra
are shown shrunken and the model is clipped to show detail.

to represent such diamonds and have achieved encouraging
results toward this goal. We are also seeking to reduce the
geometric overhead associated with each diamond, includ-
ing the need to encode the central vertices of diamonds and
the location of the interpolation coefficients of the vertices
of volume patches.
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