Modeling and visualization approaches for time-varying volume data

Kenneth Weiss Department of Computer Science, University of Maryland, College Park

Introduction

A time-varying volume dataset consists of

- a set of points in 3D Euclidean space
- describing one or more scalar quantity
- at different instances of time

The major distinction between models of time-varying datasets lies in their treatment of the temporal dimension

- A collection of 3D scalar fields
- Video metaphor
- A single 4D Scalar field
- Time treated as a spatial dimension

Methods that treat the temporal and spatial dimensions differently

	Primary	Secondary	Methods
	Octree	None	T-Bon[Sutton
Spatial		Binary Tree	TSP [Shen99 WTSP [Wang
	Linear	Linear Keyframes [W	[Waters06]
	Sequence	Diamonds	[Gregorski04
Temporal	Binary Time Tree	Span Space	THIT [Shen9 [Chiang03] [Vrolijk06]

Methods that treat the temporal and spatial dimensions equally

	Cell Type		
	Hypercube	Simplicial	
None	[Roberts99] [Bhaniramka04]	[Weigle98]	
Spatial	POT [Shi06]	_	
Multiresolution	[Westermann94]	[Lee04] [Linsen04] [Ponchio08]	

	Cell-based decomposition
	Decompose the domain into cells and apply a divide and conquer approach to extract mesh <i>patches</i> from each cell.
n	Isosurfacing: Surface of isovalue α passes through any cell having at least one vertex whose value is above α and at least one vertex whose value is below α .
	Interval volume: Generalization of isosurfaces to include the set of points enclosed between two surfaces.
	Time-varying approaches
	Hypercubic cells
	 [Roberts99] Composes cases from subcases containing a single connected component
01	 [Bhaniramka04] Generates cases on the fly and caches frequent cases
9] 5]	 [Ji02] Interval volume cases created via a projection from 5D cells down to 4D The extra dimension is the scalar value
	Pentatopic cells
]	 [Weigle98] Recursive extraction of (d-1)- dimensional simplexes from <i>d-simplices</i>.
	1. Given isovalue, extract a 3D envelope
	2. Given a time value, extract a surface
	Comment: Types of symmetry used to create cases determines the number of distinct cases. [Weigle98] has high overhead from subdividing a hypercube into 192 pentatopes.
	Conclusions
5]	Due to the large size of the datasets, most model These often involve rearranging the datasets (val
	Since value-based indexing methods hash the dat
	Video metaphor useful when trying to understand

Multiresolution enables application-dependent variable-resolution inspection of huge datasets. Wavelets do not guarantee topology of extracted meshes so are more appropriate for DVR applications. Mesh-based approaches enable morphological analysis to be incorporated into the extraction process.

Leila De Floriani

Department of Computer Science, University of Genova, Genova, IT

Only a small fraction of the cells intersect	
a particular isosurface or interval volume.	
Indexing the cells by their extreme values	
saves time by culling the empty cells.	
Hierarchical spatial indexing	
Branch on Need Octree (BONO) maintains	
within each node to cull the empty cells.	
Value-based indexing	
Cells are projected into the 2D span space.	
Position of a cell is determined by the	
Minimum and maximum values it contains.	
A spatiat much is created for the span space.	
Time-varying approaches	
 T-BON - A BONO is created for each timestep 	
but does not exploit temporal conerence.	
• POT - DON OCTREE TRACKS Changes in Cetts as values increase.	
 THIT - Projects cells from each timestep 	
into span space and coalesces coherent	
cells into a binary time tree.	
Out-of-core variations of THIT	
 [Chiang03] - Uses cache-oblivious time tree 	
and clusters spatially conerent cells.	
• [violitico] - Renders approximate surfaces using only the span-space location.	
• [Waters06] - Updates between timesteps	
stored in space as difference intervals.	
Keyframes accelerate random access.	
Comment: Speedup associated with indexing	
techniques is data dependent and assumes	
a high degree of coherence within the dataset.	

ls are optimized for specific visualization operations. lue-based indexing) or modifying the values (wavelets). a, they lose the spatial relationships between cells.

d evolution of features within the dataset. Direct 4D techniques maintain correspondences between timesteps enabling smoother interpolation.

Aultiresolution approaches

Inderlying domain is typically at much higher esolution than can be meaningfully analyzed. Aultiresolution models enable extraction of variable-resolution representations where resources can be focused on relevant regions.

Nesh based models

Typically nested hierarchies such as octrees and Longest Edge Bisection(LEB) hierarchies.

Vavelets based models

Multiresolution behavior determined by space of functions.

Aesh based time-varying approaches

- TSP Tree- Octree partitioning over 3D domain. Each node is a binary tree of temporal values. No 4D octree methods
- [Lee04] LEB of 4D pentatopes.
- [Gregorski04] Sequence of 3D LEB hierarchies for each timestep. Exploits temporal coherence by starting with previous mesh.
- [Ponchio08] Batched Multi-Tessellation over isosurface extracted from hypercubes.

Vavelet time-varying approaches

- [Westermann94] Lossy wavelet projection.
- [Linsen04] Uses lifting scheme on hierarchy
- of B-spline filters. Similar adaptability as LEB.
- WTSP Distributed wavelet extension of TSP. Dependency between nodes reduced through redundant storage (similar to keyframes).

Comment: Wavelets can require expensive untime reconstruction. Bilinear B-spline basis offer best time-space tradeoffs.

Acknowledgements

Anonymous reviewers for their suggestions

- This work has been partially supported by • NSF grant CCF-0541032
- MIUR-FIRB project SHALOM
- contract number RBIN-04HWR8
- MIUR-PRIN project on modeling of
- scalar fields and digital shapes.