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Abstract. Time-varying volumetric data arise in a variety of applica-
tion domains, and thus several techniques for dealing with such data
have been proposed in the literature. A time-varying dataset is typically
modeled either as a collection of discrete snapshots of volumetric data, or
as a four-dimensional dataset. This choice influences the operations that
can be efficiently performed on such data. Here, we classify the various
approaches to modeling time-varying scalar fields, and briefly describe
them. Since most models of time-varying data have been abstracted from
well-known approaches to volumetric data, we review models of volumet-
ric data as well as schemes to accelerate isosurface extraction and dis-
cuss how these approaches have been applied to time-varying datasets.
Finally, we discuss multi-resolution approaches which allow interactive
processing and visualization of large time varying datasets.

1 Introduction

In the last few years, there has been an increasing trend in scientific visualization
toward the generation and interaction with very large time-varying volume data
sets. Such data sets are used as basic tools for analyzing the dynamics and the
evolution of phenomena in a variety of application domains, including medicine,
meteorology, astrophysics and engineering.

Time-varying volume data sets are sets of points in the 3D Euclidean space
describing one or more scalar quantity (e.g., pressure, temperature, strength of
an electric or magnetic field) at different instances of time. Approaches to deal-
ing with time-varying data differ in their treatment of the temporal dimension.
Values in local regions tend to change slowly over short intervals of time. This
temporal coherence can be exploited in interactive applications by efficiently
encoding these small changes, thus minimizing storage and retrieval costs. A
common metaphor for this approach is that of a video, where users can gain in-
sight into the dataset by ‘playing’ the discrete snapshots of the volume over time.
Decoupling the spatial and temporal components can be advantageous when the
spatial and temporal resolutions differ greatly or where there is a higher de-
gree of spatial coherence in a local region than there is temporal coherence, or
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vice versa. An alternative approach is to treat the temporal and spatial dimen-
sions in a homogeneous way. Although this approach can be more complex to
conceptualize, it offers several advantages. Since time is assumed to be contin-
uous, smoother animations can be performed by interpolating the field values.
Additionally, the correspondence between time steps can be exploited to track
features over time.

Most of the techniques for visualizing time-varying volume data are based
on direct volume rendering (DVR) or isosurface and interval volume extraction.
Specific algorithms have been developed for performing such tasks also on 4D
hypercubic grids, or 4D simplicial meshes.

The huge size and complexity of available time-varying data sets poses in-
teresting challenges for inspecting, analyzing and visualizing such data, as the
underlying domain is typically at a much higher resolution than one which could
be interactively processed or meaningfully analyzed. This naturally leads to the
investigation of hierarchical methods to control and adjust the level of detail of
a given data set, the so-called multi-resolution models. A multi-resolution model
encompasses several representations of the same shape at a virtually continuous
range of resolutions and facilitates the efficient retrieval of variable-resolution
representations of the shape. Multi-resolution approaches have successfully been
applied to large data sets describing 3D shapes, as well as 2D and 3D scalar
fields discretized through simplicial meshes (see [1, 2] for surveys). Reducing the
geometry in less ‘interesting’ areas allow users to focus on a region of interest,
thus achieving lower storage costs and better performance.

The remainder of the paper is organized as follows. We review some back-
ground notions in Section 2. Representations for efficient isosurfaces and interval
volume extraction from time-varying volume data are discussed in Section 3. In-
dexing techniques proposed for speeding up isosurface extraction and rendering
are reviewed in Section 4. In Section 5, we provide an overview of multi-resolution
approaches for both 3D and time-varying scalar fields. In Section 6, we summa-
rize the presented techniques and discuss directions for future work.

2 Background Notions

Time-varying volumetric data sets are given as sets of points in 3D space with
which one or more scalar values are associated at different instants in time. The
points are either at the vertices of a regular grid, or they can be irregularly dis-
tributed. These data sets can be either interpreted as collections of 3D data sets
or as four-dimensional ones. In the latter case, each point has four coordinates
and one or more scalar values are associated with each point in 4D space.

Time-varying data sets are modeled through a decomposition of the 3D (or
4D) domain into a collection of non-overlapping cells with vertices at the data
points, forming a mesh. The mesh can be a regular grid, and thus the 3D (4D)
cells are cubes (hyper-cubes), or a simplicial mesh. In the first case, a tri-linear
(quadri-linear) interpolant is used over the 3D (4D) cells, while in the second
case the field values are linearly interpolated.
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A k-simplex is the locus of the points in IEd that can be expressed as the
convex combination of k + 1 affinely independent points. A simplicial mesh is a
collection of k-simplexes where the intersection between two simplices is empty
or a face of both simplices.

In isosurfacing applications, a surface passes through a cell of a mesh if the
field values at some of its vertices are greater than the isovalue, and below at
others. Such a cell is considered active. For high-quality meshes, care must be
taken to ensure that the extracted mesh components agree at cell junctions.
An interval volume is a generalization of an isosurface and is the sub-volume
enclosed between two isosurfaces.

3 Isosurface and Interval Volume Extraction Techniques

Several algorithms have been developed for extracting isosurfaces and interval
volumes from 3D scalar fields. These algorithms typically assume a decomposi-
tion of the domain of the field into a set of disjoint cells and compute a conform-
ing mesh by extracting patches of the isosurface or of the interval volume from
each active cell. Patch vertices are computed along the intersected edges of the
cell using linear interpolation, and the patch is triangulated via a lookup table
based on the relative values of the field at the vertices of the cell with respect to
the isovalue. When generating the table, symmetry and topology considerations
can be used to reduce the table size and to ensure correctness of the algorithm.
The Marching Cubes (MC) algorithm [3] and its variants (e.g. [4] for interval vol-
umes) operate on cubic grids, while the Marching Tetrahedra approach [5] and
its variants (e.g. [6] for interval volume) operate on tetrahedral meshes. These
latter can be generated from irregular grids or from regular grids by decomposing
cubic cells into five or six tetrahedra.

For the 4D case, marching methods have been extended to regular grids using
cell-based lookup tables [7, 8]. Roberts and Hill [7] reduce the exponential growth
in the number of cases by decomposing isosurface cases into a set of patches
containing a single connected component. Each case in their lookup table is
then composed of a set of ‘sub-cases’ containing a single connected component.

Bhaniramka et al. [8] propose an alternative case-based isosurfacing method
for hypercubic as well as convex cells in arbitrary dimension. They reduce the
computational and storage costs for infrequent cases through a lazy evaluation
scheme that creates cases on the fly and caches the more common cases.

Weigle and Banks [9] provide an isosurfacing technique for simplicial meshes.
They decompose hypercubic cells into pentatopes (i.e. 4-simplexes) and then
apply a constraint-based scheme to extract (d − 1)-dimensional simplices from
d-simplices. Thus, by specifying an isovalue for the 4D dataset, they extract a
tetrahedral mesh containing the envelope of all isosurfaces swept by this isovalue.
By further specifying a time value, they extract a specific isosurface from the
tetrahedral mesh. Although working in the higher dimensional space enables
smoother interpolation, their initial decomposition of each hypercube into 192
pentatopes leads to a significant overhead.
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Algorithms have also been proposed to extract interval volumes from 4D
meshes. In [10, 11], interval volumes are used to segment a volume data set and
several new interval volume rendering techniques are presented. They gener-
ate interval volume cases via a projection from (d + 1)-dimensional isosurface
cases onto d-dimensional interval volume cases. This is accomplished by treating
the range of the scalar field as an extra dimension when generating the cases.
For instance, they compute interval volumes for 3D cubic cells by isosurfacing
4D cells. However, when this dimension-lifting approach is applied to simplicial
meshes, cases for d-simplices are generated from prisms in (d + 1)-space rather
than (d + 1)-simplices. Ji et. al. [12] apply a similar dimension-lifting technique
to track the evolution of isosurfaces, such as the creation, splitting and merging
of surfaces, in volumetric and time-varying datasets. They generate hypercubic
interval volume cases from 5-dimensional hypercubes.

4 Indexing Approaches

Methods that exploit the spatial and temporal coherence within the data can
lead to significantly more efficient isosurface extraction algorithms. For a given
isovalue, only a small subset of the domain contains active cells. Thus, precom-
puted indexes on the field values within cells enable a more efficient isosurface
extraction than a brute force search.

Indexing schemes have been developed for 3D scalar fields. There are two pre-
dominant indexing techniques: hierarchical spatial indexing and value indexing.
The most widely-used spatial indexing technique is Wilhelms and Van Gelder’s
Branch-On-Need Octree (BONO) [13]. This method applies a hierarchical spatial
partitioning of the domain into an octree and associates with each node of the
octree the maximum and minimum field values of its children. BONO efficiently
handles datasets whose dimension are not powers of 2, and uses a caching mech-
anism to minimize field value lookups of neighboring cells. In contrast, the value-
based partitioning approaches [14–16] attempt to minimize isosurface extraction
time by reorganizing the data into a two-dimensional span space on the range of
the field. In span-space techniques, each cell is projected into a two-dimensional
point whose coordinates are the minimum and maximum field values spanned
by the cell. Efficiency is achieved through optimized data structures on the span
space rather than the spatial coordinates of the cells. The NOISE algorithm [14]
uses a kD tree to efficiently extract an isosurface from a 3D volumetric data set
in O(

√
n + k) time, where n is the total number of cells, and k is the number of

active cells. ISSUE [15] improves the performance of the NOISE algorithm and
provides a parallel algorithm by subdividing the span space into an axis-aligned
lattice where each tile contains approximately the same number of cells. Interval
trees [17] are another efficient method for performing range queries, and have
been used by van Kreveld [18] to extract iso-contours from triangulated terrain
data. Cignoni et al. [16] use interval trees to index cells in span space, and prove
that their iso-surface extraction algorithm operates in optimal O(log n+k) time.
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Models for time-varying data often use the indexing schemes described above,
but differ in their method of exploiting the spatial and temporal coherence within
the data. The Temporal Branch-on-Need octree (T-BON) [19] exploits the spatial
coherence of the data by creating a BON octree for each time step. By using the
same branching structure for all time steps, the T-BON amortizes the storage
overhead of the octree structure. It stores the data for each time step indepen-
dently, and does not incorporate any optimization for exploiting the temporal
coherence. More recently, the Persistent Octree (POT) [20] uses a compact 3D
or 4D octree to store the active cells for all isosurfaces. It treats time as a spatial
dimension, and extracts all cells that contain the isovalue and intersect a tem-
poral hyperplane. It has slightly quicker rendering times than those of BONO
but exhibits a significant memory overhead.

The Temporal Hierarchical Index Tree (THIT) [21] projects the cells from
each time step into span space and coalesces cells with high temporal coherence
using a binary tree. The cells in each node of the binary tree are then indexed in
span space using a variation of the ISSUE [15] and interval tree [16] algorithms.
Chiang’s approach [22] is similar to THIT but it is catered for out-of-core data
access. This approach uses a cache-oblivious time tree whose nodes are stored
out-of-core. In an attempt to improve I/O efficiency, spatially coherent cells are
clustered into meta-cells, containing the field values for all time-steps. Vrolijk
et. al. [23] also use an out-of-core variation of the THIT to quickly render ap-
proximate isosurfaces. They note that accessing the field values from disk can be
a significant bottleneck in isosurface rendering algorithms and develop a point
splatting algorithm that uses only the min-max range of a cell. Waters et. al.
[24] use the video metaphor as well as a modified THIT to efficiently encode the
difference between time steps. This technique enables quick random access into
the dataset through appropriately placed key frames.

It is important to note that the speedup associated with indexing techniques
depends heavily on the dataset due to their assumption of coherence in the
dataset and in data access patterns.

5 Multi-resolution Approaches

Multi-resolution approaches can be subdivided into two categories: mesh-based
approaches, where the approximation is guided by the mesh refinement, and
wavelet-based approaches, where the multi-resolution behavior is determined by
the space of functions.

A class of multi-resolution models which has been extensively studied in
the literature is those based on a nested decomposition of the field domain. A
nested mesh is a mesh in which the cells are defined by the uniform subdivi-
sion of a d-dimensional cell into scaled copies. The most common examples of
nested meshes are quadtrees, octrees and their d-dimensional generalization. The
major problem with such models is the intrinsic difficulty in extracting highly-
adaptive representations [1, 2]. Topologically consistent meshes are extracted by
constraining two adjacent cells to differ by at most one level in the subdivision.
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Nested multi-resolution models generated through longest edge simplicial
bisection provide more flexibility. The bisection rule for a d-simplex σ in a d-
dimensional mesh Σ consists of replacing σ with the two d-simplexes obtained
by splitting σ at the middle point vm of its longest edge e and by the hyper-
plane defined by vm and the vertices of σ which are not endpoints of e (see
Figure 1(a)). When this rule is applied recursively to an initial decomposition

(a) Longest edge bisection (b) Diamond in 3D

Fig. 1. (a) A simplex is bisected along the hyperplane containing the midpoint vm of
its longest edge e and all vertices not adjacent to e. (b) The set of simplices sharing a
common longest edge (dashed) of a simplex (lower right) form a diamond.

of the d-dimensional hyper-cubic domain into d! simplexes, it generates a nested
mesh, denoted as a hierarchy of d-simplexes. Hierarchies of triangles are used as
the basis for terrain visualization [25, 26], and hierarchies of tetrahedral meshes
have been applied to volume data visualization (see [2] for a survey). When
bisecting a d-simplex σ, all d-simplexes sharing the common longest edge with
σ must be split at the same time to ensure a conformal mesh. The set of d-
simplexes which share their split edge form a diamond (see Figure 1(b)). In [26,
27], efficient data structures are proposed for hierarchies of triangles and tetra-
hedra, respectively, based on the implicit encoding of the diamonds and their
dependency relations as a Directed Acyclic Graph (DAG). In [28] a technique is
proposed for extracting nested tetrahedral meshes without cracks based on an
O(1) neighbor finding algorithm applied to the hierarchy of tetrahedra.

To the best of our knowledge, there have not been any 4D octree approaches
treating the temporal dimension in the same manner as the spatial dimensions.
Shen et al. [29] indicate that such approaches would suffer by not being able to
properly exploit the coherence among each component. They instead propose the
Time-Space Partitioning (TSP) tree [29], which exploits the spatial and temporal
coherences within the dataset. The TSP tree creates an octree partitioning over
the 3D domain whose nodes are binary trees containing the temporal values.
This organization allows efficient incremental DVR of the dataset since cells
whose values do not change across time steps do not need to be updated.

Gregorski et al. [30] use the video metaphor for time-varying data but repre-
sent the spatial component of the data as a hierarchy of tetrahedra. This allows
them to have level-of-detail control over the extracted mesh in each frame, but
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limited frame to frame coherence. To advance to the next frame, they need to
refine/coarsen each node of the previous frame’s mesh. Instead of refining neigh-
boring geometry to ensure a conformal mesh, they use a lookup table to locally
subdivide tetrahedra that do not align with their neighbors. They claim that
this improves their run-time performance due to the increased parallelizability
of the algorithm.

Lee et al. [31] extend their tetrahedral neighbor finding algorithm [28] to
4D hierarchical datasets, which they denote as a Hierarchy of Pentatopes. This
allows constant time computation of diamonds in 4D and thus enables the ex-
traction of conforming adaptive meshes in 4D.

Recently, Ponchio and Hormann [32] introduced an interactive multireso-
lution volume rendering algorithm for irregular time-varying datasets. They
first apply the algorithm by Bhaniramka et al. [10] to extract a 4D tetrahe-
dral isosurface from the dataset at full resolution. Then they apply the Batched
Multi-Tessellation (BMT) algorithm [33] to create a multi-resolution structure
on the isosurface and convert the faces of each tetrahedron in 4D space into so-
called dynamic triangles. The dynamic triangles in each patch are then projected
into span space and rendered on the GPU. Since this method first extracts the
tetrahedral isosurface at full resolution and then computes the multi-resolution
structure on this mesh, the generation time can be quite inefficient. For in-
stance, a 3743 × 600 dataset takes more than 13 days to pre-process. However
after pre-processing has completed, their algorithm can render at a rate of 20M
triangles/sec regardless of the input dataset.

Wavelets offer another multi-resolution approach to scalar field modeling,
which can be applied directly to the scalar field [34, 35]. Although wavelet tech-
niques such as [36] can be applied to an extracted surface, this requires generation
and storage of the mesh at full resolution as well as a calculation of the wavelet
coefficients before the mesh can be simplified. Westermann [34] proposed a lossy
wavelet projection scheme to speed up the volume rendering integral calculation
while maintaining accurate error bounds and reducing memory requirements.
If separable bases are used, this method can be directly applied to higher di-
mensional scalar fields. Linsen et. al. [35] present a hierarchy of B-spline filters
for n-variate multi-resolution analysis, which they call n

√
2-subdivision, where

each finer level of resolution only doubles the size of the mesh (an approach
formalized in [37] and related to the diamonds introduced above). They use the
lifting scheme [38] as an in-place, lossless family of bases with narrow support
to achieve an adaptable level-of-detail representation of the data.

Wang et al.’s Wavelet-based Time-Space Partitioning Tree (WTSP) [39] ex-
tends the TSP tree [29] with wavelet coefficients. They use a distributed algo-
rithm that reduces the dependency between processors for wavelet reconstruction
by redundantly storing copies of the reconstructed values at deeper levels (in a
manner similar to keyframes in videos).

Wavelet methods offer an advantage in the fidelity of the data at higher scales,
but they may require expensive runtime reconstruction and loss of adaptability.
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Since they downsample using low-pass filters, they can avoid aliasing effects
introduced by other multi-resolution methods.

The choice of basis can have dramatic effects on reconstruction time and ac-
curacy. A narrow filter requires fewer data samples to be resident in memory, but
might introduce reconstruction artifacts. Linsen et al. [35] suggest that bilinear
B-spline wavelets offer the best space-time tradeoff.

6 Concluding Remarks

Due to the vast size of time varying volume datasets, most of the existing data
structures are optimized for specific operations such as isosurface extraction or
direct volume rendering. Such methods typically involve reorganizing the layout
of the data, as in value-based indexing schemes or augmenting the data with
additional information, as in the spatial indexing schemes. These approaches
achieve efficiency by exploiting the spatial and temporal coherences within the
data, but their utility can vary depending on how well the data fits the expected
distribution.

The video metaphor [30, 24] is appropriate when the goal is to understand
the evolution of features within the dataset. However, since the correspondence
between the time steps is not kept, it can be difficult to quantify the changes.
In contrast, 4D approaches [9, 7, 8] directly encode these correspondences. As
such, tetrahedral isosurfaces cover the envelope of triangular isosurfaces over all
time steps within the dataset. Triangular isosurfaces can then be extracted and
interpolated from these envelopes along cutting planes in the temporal (or other)
dimension.

Since active cells are usually distributed throughout the dataset, value-based
indexing schemes tend to be among the most efficient ones for isosurface ren-
dering. These approaches are essentially equivalent to hashing, and as such, the
spatial relationships between cells of the data are lost. Thus, while these ap-
proaches are very efficient at rendering the data, they are less appropriate when
adjacency relationships are required in downstream applications which involve
navigation.

A multi-resolution model offers an exciting approach to time varying data-
sets. It allows not only a reduction of the size of the underlying representation
but also provides the possibility of inspecting a field at variable resolutions in
the domain, according to specific application needs. Bertram et al. [40] note that
while thresholded and quantized wavelet compression algorithms are effective in
minimizing the memory requirements and field error, they offer no guarantees
of maintaining the topology of extracted isosurfaces. Thus, wavelet methods are
generally superior in direct volume rendering applications, while mesh based
multi-resolution techniques are more appropriate for isosurfacing. Mesh-based
approaches allow morphological analysis to be incorporated into the adaptive
refinement. Furthermore, the aliasing artifacts introduced by mesh-based tech-
niques from downsampling tend to reduce at higher resolutions. It is often more
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efficient and more accurate to retrieve the next level of resolution from a hier-
archical mesh than to reconstruct the wavelet coefficients at the current level.

We conclude with a taxonomy of the approaches presented in this paper.
In Tables 1 we classify the approaches that distinguish between the temporal
and spatial components, first by their primary organization (space or time) and
then by their other differences. Although all such spatial indexing approaches
are based on the BONO [13], the T-BON [19] does not utilize any temporal
coherence, while approaches based on the TSP [29] exploit this coherence using
a binary tree on the temporal dimension. The remaining approaches either use
the video metaphor and represent a linear sequence of 3D samples, or a binary
tree approach, such as those based on the THIT [21]. The approaches that treat
the temporal and spatial components equally are presented in Table 2. Here, we
distinguish between the cell type (hypercubes and pentatopes) as well as whether
the technique exploits spatial coherence or uses a multi-resolution approach.

Primary Secondary Approach

Spatial Octree
None T-Bon [19]

Binary Tree
TSP [29]

WTSP [39]

Temporal

Linear Sequence
Keyframes Waters et al. [24]
Diamonds Gregorski et al. [30]

Binary Time Tree Span Space
THIT [21]
Chiang [22]

Vrolijk et al. [23]
Table 1. Taxonomy of approaches that differentiate in their treatment of spatial and
temporal dimensions. The spatial approaches are all based on BONO [13] while the
temporal approaches are either organized as a series of 3D volumes or a tree of coherent
cells in span space.

Cell Type
Hypercube Simplicial

None
Roberts and Hill [7]

Weigle and Banks [9]
Bhaniramka et al. [8]

Spatial POT[20] –

Multi-resolution Westermann [34]
Lee et al. [31]

Linsen et al. [35]
Ponchio and Hormann [32]

Table 2. Taxonomy of approaches that treat spatial and temporal dimensions equally
in terms of the coherence exploited (None, Spatial and Multi-resolution) as well as the
cell type (hypercube and simplicial).
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