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Summary. We investigate a morphological approach to the analysis and under-
standing of three-dimensional scalar fields, and we consider applications to 3D med-
ical and molecular images as examples. We consider a discrete model of the scalar
field obtained by discretizing its 3D domain into a tetrahedral mesh. In particular,
our meshes correspond to approximations at uniform or variable resolution extracted
from a multi-resolution model of the 3D scalar field, that we call a hierarchy of di-
amonds. We analyze the images based on the concept of discrete distortion, that
we have introduced in [26], and on segmentations based on Morse theory. Discrete
distortion is defined by considering the graph of the discrete 3D field, which is a
tetrahedral hypersurface in R4, and measuring the distortion of the transformation
which maps the tetrahedral mesh discretizing the scalar field domain into the mesh
representing its graph in R4. We describe a segmentation algorithm to produce
Morse decompositions of a 3D scalar field which uses a watershed approach and we
apply it to 3D images by using as scalar field both intensity and discrete distortion.
We present experimental results by considering the influence of resolution on distor-
tion computation. In particular, we show that the salient features of the distortion
field appear prominently in lower resolution approximations to the dataset.

1 Introduction

We consider a three-dimensional scalar field which is defined by a collection of
function values, each given at a point in a 3D domain. Examples of 3D scalar
fields of interest in biomedical applications are 3D images, where the intensity
at each voxel defines the scalar field. A scalar field is known at a finite set of
points in 3D space, and a digital model of the field is constructed based on
such points. Models of 3D scalar fields are based on voxels, or on tetrahedral
meshes with vertices at the points in the 3D space at which the field is known.
In both cases, such models tend to be verbose and may not be immediately
useful to understand the behavior of the field.
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Here, we consider tetrahedral meshes extracted from a multi-resolution
representation of 3D images provided by a regular tetrahedral hierarchy. We
have developed an efficient representation of a regular tetrahedral hierarchy,
called a hierarchy of diamonds, as discussed in [43].

The aim of morphological analysis is to provide a tool for understanding
the structure of a scalar field through structural representations of the field so
that its basic features can be easily recognized. Here, we use the notion of dis-
crete distortion to support morphological analysis. In [26] we have introduced
a discrete approach to curvature for three-dimensional tetrahedralized shapes
embedded in 4D space, that we called discrete distortion. If we consider 3D
scalar fields, we can view the values of the field as constraints on the vertices
of a tetrahedral mesh. From this perspective, the values induce a distortion
of the geometry of the mesh, seen as a hypersurface representing the graph of
the scalar field in R4. As for surface curvature, discrete distortion highlights
the local curvature of the constrained shape (the graph of the 3D scalar field)
which cannot be perceived in the three-dimensional domain. As curvature
gives interesting insights in terrain analysis, we show that distortion provides
additional information to analyze the behavior of the intensity field. A null
distortion value highlights a linear behavior of the intensity field, while a con-
stant distortion corresponds to a uniform non-linear behavior. We observe
that directions in which distortion changes indicate interesting directions in
which the intensity field varies its growth speed.

One way to perform morphological analysis is to automatically decompose
the domain of the field into meaningful parts in order to support understand-
ing and semantic annotation. Segmentation has been the basic tool to support
reasoning on terrains and 3D shapes. Here, we propose segmentations for a
3D image based the intensity value or on discrete distortion, in a similar way
as done for terrains where segmentations are computed based on elevations
and/or on curvature values.

The segmentation of a scalar field is performed based on its critical points,
and the steepest directions through which the scalar field increases or de-
creases. This leads to two dual decompositions. The stable Morse decomposi-
tion associates a 3D cell with each local minimum of the field, and two adja-
cent 3D cells touch at ridge surfaces (i.e., surfaces where the field decreases on
both sides). The unstable Morse decomposition symmetrically associates a 3D
cell to each local maximum, and the boundaries of the 3D cells are at valley
surfaces. Here, we present an algorithm for computing Morse decompositions
based on a watershed approach and we compute Morse decompositions based
on the intensity field and on a new field induced by discrete distortion. This
approach reveals relevant features, different from those that are generally ex-
tracted by studying the behavior of the gradient field (i.e., the critical points
of the intensity field). For example, the extrema of distortion correspond to
locations in which the intensity field has abrupt variations, which might not
be perceptible from the intensity values.
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We apply our approach to the analysis of the morphology of scalar fields
through examples on synthetic, biological and medical datasets. We show
color-coded visualization of the fields based on the intensity field and of dis-
tortion. We study the interaction between the resolution of the tetrahedral
mesh approximating the field and the distortion values, showing that we can
reasonably approximate the 3D image at fairly low resolutions. Finally, we
show results on Morse segmentations based on the intensity and on the dis-
tortion values and we compare them.

The remainder of this paper is organized as follows. In Section 2, we pro-
vide background notions on concentrated curvature, and on Morse theory and
Morse complexes. In Section 3, we review some related work. In Section 4, we
briefly describe a mesh-based multi-resolution model that we use for repre-
senting the 3D image. In Section 5, we discuss the notion of discrete distortion
for a tetrahedralized shape representing the graph of a 3D scalar field, and
we present some of its properties. In Section 6, we present an algorithm to
segment tetrahedral meshes endowed with discrete scalar fields, and produce
Morse decompositions. In Section 7, we present experimental results on med-
ical data set and we discuss the results. Finally, in Section 8, we draw some
concluding remarks and discuss on-going and future work.

2 Background Notions

In this Section, we discuss first concentrated curvature, since the notion of
discrete distortion generalizes concentrated curvature to hypersurfaces in R4.
Then, we briefly review some notions from Morse theory which is the basis
for defining morphological segmentations for a scalar field.

2.1 Concentrated Curvature

Concentrated curvature is the discrete counterpart of Gaussian curvature for
triangulated surfaces [1, 25, 40], and was introduced by Aleksandrov for 2D
scalar fields represented as triangle meshes [1]. Given a triangulated surface
in R3 and a vertex p in the interior of the corresponding triangle mesh, the
local neighborhood of p is the union of the angular sectors of the triangles
incident at p. The total angle Θp at p is given by the sum of the angles at p
of all the triangles incident in p. The concentrated curvature at a vertex p is
defined as K(p) = 2π−Θp, when p is an internal vertex [40]. If the sum of the
angles of all these sectors is not equal to 2π, p is called a singular conical point.
When the surface is defined by a scalar field, the concentrated curvature for
boundary points can be defined as the defect between the angle at the vertex
on the surface and its corresponding angle on the xy-projection domain.

Note that concentrated curvature involves only the sum of angles of the
triangles incident at a vertex and does not take into account their geomet-
ric position. Planar points have null concentrated curvature. Saddle points
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have negative concentrated curvature, while convex and concave points have
positive concentrated curvature. Figure 1(a) illustrates the behavior of con-
centrated curvature on the surface of a molecule: red areas correspond to
high curvature, and blue areas to low curvature. The segmentation in Figure
1(b) represents a Morse segmentation of the surface based on concentrated
curvature.

(a) (b)

Fig. 1. In (a), surface of a molecule with associated concentrated curvature repre-
sented in a rainbow color scale (blue = low values, red = high values). In (b), Morse
decomposition of the surface based on concentrated curvature.

2.2 Morse Theory and Morse Complexes

Let f(x, y, z) be a scalar field defined on a domain D of R3, and let function
f be continuous and smooth in D. A point p of D is a critical point of f if the
gradient of f at p is null. Points that are not critical are called regular points.
A critical point p is degenerate if the Hessian matrix of the second partial
derivatives of f at p is not singular. A scalar field f is a Morse function if
and only if all its critical points are not degenerate. Morse [27] showed that
the critical points of a Morse function are isolated. The number i of negative
eigenvalues of the Hessian matrix is called the index of critical point p, and p
is called an i-saddle. A 0-saddle is a minimum and a 3-saddle a maximum.

An integral line of f is a maximal path which is everywhere tangent to
the gradient of f . Each integral line connects two critical points of f , called
its origin and its destination. Integral lines that converge to a critical point
p of index i form an i-cell, called a stable cell of p. Dually, integral lines that
originate at p form its unstable (n − i)-cell. The stable and unstable cells
decompose D into stable and unstable Morse complexes. Figure 2 illustrates
the above concepts for the domain of a 2D scalar field.

A Morse function f is called a Morse-Smale function if each non-empty
intersection of a stable and an unstable cell is transversal. The connected
components of the intersection of the stable and unstable cells define a Morse-
Smale complex. Note that the Morse-Smale complex for f can be obtained by
the overlay of its stable and unstable complexes.
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Fig. 2. Stable Morse complex for a 2D scalar field. Arrows denote the negative
gradient field. Only a window over the domain of the field is shown; the stable cells
of the minima are shown in different colors: each stable cell is the region covered by
arrows converging to the same minimum.

3 Related Work

In this Section, we briefly review related work on discrete curvature estimators,
on multi-resolution modeling of 3D scalar fields, on algorithms for computing
Morse decompositions of 3D scalar fields, and on features of interest in medical
imaging.

3.1 Discrete Curvature Estimators

Curvature is an important notion in mathematics that found a great interest
in the last century. Curvature is also used to study the local geometry and
topology of surfaces from the metric point of view. With the development
of discrete geometry, many authors tried to define a discrete counterpart of
curvature based on the properties observed in the continuum [12, 18, 37, 38].
There is a rich literature dealing with the problem of defining and comput-
ing discrete curvature estimators for triangle meshes, and more recently for
tetrahedral meshes (see [12, 18, 37, 38] for a survey). Concentrated curva-
ture [1, 40] is a simple and efficient method to define a discrete curvature, as
discussed in Section 2.1. Dyn et al. discuss how to optimize the triangulation
of the boundary of a 3D object based on discrete curvature [9].

In the 3D case, the Ricci tensor is used to define the curvature notion for
three-dimensional shapes [2], and, in the discrete case, the Laplace operator
is generally used to define a discrete approach to curvature [33].

In the 4D case, curvature is one of the most important mathematical
notions on which general relativity is based. Curvature of the space-time gave
an important contribution to understand many phenomena in physics (black
holes, gravitational lenses, light trajectories, interaction between planets, ...).
Based on Aleksandrov’s concentrated curvature, Regge introduced a discrete
version of curvature for the four dimensional space-time [32].
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3.2 Multi-resolution Modeling

A very large class of multiresolution models of volumetric scalar fields is pro-
vided by nested meshes, in which all elements are defined by the uniform
subdivision of a small set of primitive cells. Examples include octrees formed
by cubes [36] and tetrahedral meshes generated by the so-called Red/Green
tetrahedron refinement [5].

Nested tetrahedral meshes based on the Longest Edge Bisection (LEB) op-
eration were originally introduced for domain decomposition in finite element
analysis [20, 23, 34], and have since then been applied in many different con-
texts, including scientific computing [46, 13, 14], surface reconstruction [24]
and volume segmentation [21]. A recent survey on nested simplicial meshes
based on bisection can be found in [44].

The LEB operation is defined by bisecting a tetrahedron t along the plane
defined by the midpoint of its longest edge e and the two vertices of t not
incident to e. The containment relation among the tetrahedra generated by
successive LEB operations naturally defines a binary tree, where the two tetra-
hedra generated by bisecting a parent tetrahedron t are the children of t. When
a full binary tree is stored, this representation can be efficiently encoded as a
linear array, and the parent-child relation can be implicitly determined from
the array indices [13, 22, 46]. A forest of six such tetrahedral binary trees,
whose roots share a common cube diagonal can thus decompose a cubic re-
gion of space.

We are often interested in generating crack-free, or conforming, tetrahedral
meshes, since cracks in the mesh correspond to discontinuities in scalar fields
discretized through it. Methods of ensuring continuity have been proposed
based on a hierarchical monotonic error metric [29], symbolic neighbor-finding
operations [20, 22] or an implicit clustering of tetrahedra sharing a common
bisection edge into a diamond primitive [14, 42]. In this work, we utilize
diamonds to extract conforming tetrahedral meshes from the multi-resolution
model.

3.3 Algorithms for Morse decompositions in 3D

Most of the algorithms proposed in the literature for extracting an approxi-
mation of the Morse complexes in the discrete case have been developed for
terrains. The majority of them use a boundary-based approach, since they ex-
tract the decomposition by computing the critical points and then tracing the
integral lines, or their approximations, starting from saddle points and con-
verging to minima and maxima. Other algorithms use a region-based approach,
in the sense that they compute an approximation of a Morse decomposition
by growing a 2D region defined and started by the minima and the maxima
of a Morse function f . Curvature has been applied to the segmentation of 3D
shapes and terrains in combination with Morse decompositions (see, for in-
stance, [28]). A comprehensive analysis of techniques for Morse decomposition
can be found in [6].
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Alternative region-based techniques for computing the stable and unsta-
ble Morse decompositions are those based on the discrete watershed transform
(see [35] for a survey). For a C2-differentiable function f , the watershed trans-
form provides a decomposition of the domain of f into regions of influence of
the minima, called catchment basins, which are bounded by watershed lines.
If f is a Morse function, it can be shown that the catchment basins of the
minima of f and the watershed lines correspond to the 2-cells and the 1-cells,
respectively, in the stable Morse decomposition of f [6].

Much less work has been done on computing Morse decompositions for 3D
scalar fields. In [10], an algorithm for extracting the Morse-Smale decompo-
sition (i.e. the intersection of the stable and unstable Morse decompositions)
from a tetrahedral mesh approximating a 3D scalar field is proposed. The al-
gorithm computes the Morse-Smale decomposition by extracting the critical
points, then the unstable Morse decomposition and finally the stable cells in
pieces inside the unstable cells. The algorithm, while interesting from a theo-
retical point of view, has a large computation overhead, as discussed in [17].
In [17], a region growing method is proposed to compute the Morse-Smale
decomposition inspired by the watershed approach. A procedural approach
based on discrete Morse theory is described in [15] which also computes the
Morse-Smale complex.

A major issue when computing Morse decompositions for 2D and 3D scalar
fields is over-segmentation, which is due to the presence of noise in the data. To
this aim, generalization algorithms have been developed in order to eliminate
less significant features from a Morse or Morse-Smale decomposition, mainly
for 2D scalar fields. Generalization is achieved by applying an operation, called
cancellation of critical points. Cancellations of critical points for a 3D scalar
field consist of collapsing a maximum and a 2-saddle into a single maximum,
a minimum and 1-saddle into a single minimum, or a 1-saddle and a 2-saddle
into either a 1-saddle or a 2-saddle [7, 16].

3.4 Features in Medical Images

Features of interest in medical images (also called landmarks) may correspond
to points, lines, surfaces or volumes. Many techniques for landmark extraction
are based on curvature. In [3, 31, 39] an algorithm that computes a polygonal
approximation of the so-called Gaussian frontier is described. Points with
large curvature values along a contour are selected following different scale-
space Gaussian filters. In [4], isolines of extremal values of mean curvature
are selected to segment MRI and CT-scans images. These isolines generally
correspond to ravine and ridge lines of the surface. Based on contour detection
and curvature, an automatic landmark extraction is proposed in [11]. Several
techniques using first and second differentials of 3D operators (that extend
the 2D case) are compared on MRI and CT-scan images in [19].
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Fig. 3. The three classes of three-dimensional diamonds. The spine (internal green
edge) of a diamond of class i is aligned with the diagonal of a (d − i)-cube. A
diamond’s central vertex vc (hollow red circle) coincides with the midpoint of its
spine.

4 A Diamond-Based Multi-resolution Model

In this Section, we describe a mesh-based multi-resolution model for 3D scalar
fields called a hierarchy of diamonds, which we use to generate approximate
representations of a scalar field at variable and uniform resolutions. We have
studied the theory and the properties of hierarchy of diamonds in arbitrary
dimensions in [42].

A multi-resolution model M of a shape Σ is typically defined by three
components [8]: (a) A coarse base mesh Γ0 that approximates Σ, (b) a set
of modifications U , each of which replaces a set of cells γ1 with a new set of
cells γ2 sharing the same combinatorial boundary and (c) a direct dependency
relation R on the modifications U , where a modification u2 depends on another
modification u1 if u2 replaces a cell that was introduced in u1.

As pointed out in Section 3.2, the LEB (longest edge bisection) operation
is defined by bisecting a tetrahedron t along the plane defined by the midpoint
of its longest edge e and the two vertices of t not incident to e.

A Hierarchy of Diamonds ∆ is a multi-resolution representation of a reg-
ularly sampled 3D scalar field covering a cubic base domain D and generated
through longest edge bisection. It is based on clusters of tetrahedra, called
diamonds, sharing the same bisection edge, that we call the spine of the di-
amond. The diamond whose spine is a diagonal of D defines the base mesh
Γ0 of the model. Each diamond δ corresponds to a modification (γ1, γ2) in
the multi-resolution model, where γ1 consists of the tetrahedra of δ, and γ2
consists of the tetrahedra generated by bisecting the tetrahedra in γ1 along
the spine of δ.

A diamond δp is said to be a parent of another diamond δc if one or more of
the tetrahedra in δc is generated during the bisection of the tetrahedra in δp.
This parent-child relation defines the direct dependency relation of the model,
which can be encoded as a Directed Acyclic Graph (DAG) (see Figure 4(a)
for an illustration in 2D).
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(a) (b)

Fig. 4. (a) A hierarchy of diamonds (shown in 2D) is a rooted DAG whose nodes
are the diamonds and whose arcs encode the the dependency relation among the dia-
monds. (b) Example variable-resolution tetrahedral mesh extracted from a hierarchy
of diamonds. A tetrahedron’s color indicates its level of resolution.

An explicit encoding of the hierarchy as a directed acyclic graph would re-
quire each modification to list the tetrahedra before and after bisection as well
as the dependencies among these modifications. However, due to the regular-
ity of the vertex distribution and the subdivision rule, this model generates
only three classes of diamonds composed of six, four and eight similar tetra-
hedra [23], respectively (see Figure 3). Furthermore, the diamond classes have
three, two and four parents, and six, four and eight children, respectively.

Thus, diamond hierarchies admit extremely compact encodings of the un-
derlying multi-resolution model which exploit the implicit relationships among
the modifications and their dependencies. Each diamond is completely defined
by its spine, and all its tetrahedra are split by the diamond’s central vertex, the
unique midpoint of its spine. Thus, diamonds are in one-to-one correspondence
with their central vertices, which, in turn, are in one-to-one correspondence
with the samples of the dataset. From the coordinates of the central vertex,
we use bit manipulations to extract the complete parent-child relations. A
hierarchy of diamonds can therefore be encoded as the collection of the cen-
tral vertices of its diamonds [42], from which all geometric and hierarchical
relationships can be implicitly determined [14, 43].

A hierarchy of diamonds ∆ is used to efficiently extract variable-resolution
tetrahedral meshesΣ approximating a 3D image while satisfying an application-
dependent selection criterion. The selection criterion can be defined on prop-
erties of the domain, such as proximity to a specified region of interest, or on
properties of the range such as its degree of approximation to the underlying
dataset. In contrast to octree-based approaches, such tetrahedral meshes have
a higher degree of adaptability to the selection criterion [30], and are guaran-
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teed to be free of cracks. Figure 4(b) shows a variable-resolution tetrahedral
mesh extracted from a hierarchy of diamonds.

5 Discrete Distortion

In this Section, we briefly review the notion of distortion that we have intro-
duced in [26] and we describe some of its properties. Discrete distortion is a
generalization of concentrated curvature to tetrahedral meshes in 4D space
[26]. In [25], we have investigated discrete distortion for triangulated terrains,
and we have shown that it behaves as a discrete counterpart of mean curva-
ture. Here, we discuss the notion of distortion for tetrahedral meshes endowed
with a scalar field.

The graphical representation of a scalar field f defined on a tetrahedral
mesh Σ is a hypersurface (Σ; f) in R4, namely, a tetrahedral mesh embedded
in R4. Hypersurface (Σ; f) is generally curved due to the effects of the scalar
field values. As for concentrated curvature, one may compare the defect solid
angle at the vertices of Σ, when applying the scalar field.

The distortion at a vertex p of Σ is defined as the quantity

D(p) = 4π −
∑

Ti∈T (p)

Si, (1)

where Si is the solid angle, after applying the scalar field (i.e., within (Σ; f)),
at vertex p of tetrahedron Ti, and T (p) is the set of all tetrahedra incident at
p. A similar formula holds for boundary vertices:

D(p) =
∑
ti∈t(p)

si −
∑

Ti∈T (p)

Si, (2)

where si is the solid angle, within Σ, at vertex p of tetrahedron ti, and T (p)
is the set of all tetrahedra incident at p.

Discrete distortion for 3D scalar fields has similar properties as concen-
trated curvature for 2D fields. Concentrated curvature gives positive values
to locally convex, or concave, areas of the surface, negative values to saddles,
and null values to flat areas. Similarly, positive values of distortion corre-
spond to locally convex, or concave, portions of the hypersurface which is the
graph of the field. Negative values correspond to saddle and degenerate saddle
configurations.

Constant scalar fields are distortion-free (i.e., their distortion is null). This
can easily be understood since, for a constant scalar field, mesh (Σ; f) is
only a translation, in the fourth dimension, of the mesh Σ decomposing the
domain of the field. Hence, the Euclidean geometric structure of the mesh is
preserved. More generally, affine scalar fields are distortion-free, since they
combine rotations and translations of the whole mesh. Hence, the geometrical
structure is not subject to any distortion.
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As a consequence, piecewise linear scalar fields are distortion-free at the
interior vertices of regions where the field is linear, as they act affinely within
such regions. Another relevant property is that distortion is mesh-dependent.
This means that the distortion value at a vertex depends on the way in which
the neighborhood of such vertex is triangulated.

6 Computing Morse Complexes

We compute a discrete approximation of the unstable and the stable Morse
complexes for a 3D scalar field f defined at the vertices of a tetrahedral mesh
Σ by extending the watershed approach by simulated immersion developed
for 2D images in [41]. We describe only the algorithm for the stable complex
since the unstable complex can be built by considering field −f .

The watershed algorithm performs the following three steps:

1. sort the vertices of the mesh by increasing values of field f ;
2. associate all mesh vertices with a local minimum. This is done starting

from minima and proceeding based on increasing field values and on in-
creasing distance from already discovered local minima;

3. assign each tetrahedron to the stable 2-cell of a local minimum, based on
the assignments of its vertices.

In the second step we process the vertices of the mesh according to their
field values. Let h be the current field value (initially, h is the minimum field
value over the mesh). We consider the set H of all the vertices whose field
value is equal to h. A priority queue is used to ensure the processing vertices
in H in increasing distance from an already assigned vertex. We iteratively
pick the first vertex v ∈ H from the priority queue, and we check if some
of its neighboring vertices has already been assigned to a local minimum. If
they are all either unassigned, or assigned to the same local minimum, then
v is assigned to that local minimum. If two or more neighboring vertices are
assigned to different local minima, then v is marked as a watershed vertex.
After assigning v, the priorities of the unassigned neighbors of v are updated
in the priority queue. The above process is repeated until no more assignments
are possible (i.e., the priority queue is empty). Then, for each vertex w ∈ H
that is still unassigned, w is marked as a new local minimum, and all vertices
with the same field values equal to h, which are connected to w, are assigned to
w. Now, all vertices in H have been assigned to some local minimum (possibly
equal to the vertex itself), and the algorithm proceeds with the next field value.

The third step examines each tetrahedron τ and assigns it to a local min-
imum based on its vertices. If all four vertices of τ are marked as watershed,
then τ is marked as a watershed tetrahedron. Otherwise, among the local
minima assigned to the vertices of τ , we choose the one having minimum field
value and assign τ to such minimum.



12 L. De Floriani, F. Iuricich, P. Magillo, M. Mesmoudi and K. Weiss.

7 Experimental Results

In this Section, we present some experimental results which show the behavior
of discrete distortion as a tool for analysis of 3D images. Because of the large
size of current data sets, it is also important to perform accurate analysis
on low-resolution representations of the field. Here, we study the influence of
mesh resolution on distortion by considering variable-resolution conforming
tetrahedral meshes extracted from a hierarchy of diamonds according to a
user-defined threshold on the approximation error. In this case, resolution can
be coarsened locally in less interesting regions, without affecting the quality
of the approximation. Finally, we show and compare segmentations of the 3D
images obtained through Morse decompositions of the intensity and of the
distortion fields. To this aim, we present results on a synthetic data set in
which the intensity field is defined by an analytic function and on two real
data sets.

7.1 3D Datasets and Distortion

Our first example is a synthetic dataset defined over a regularly sampled
domain of 653 vertices. The intensity field is obtained by sampling the analytic
function f(x, y, z) = sin(x) + sin(y) + sin(z). We show here the tetrahedral
mesh at full resolution extracted from a hierarchy of diamonds built on such
data set. It is composed of 275 K vertices and 1.57 million tetrahedra. The
relationship between the intensity field and the induced distortion field over
this domain is illustrated in Figure 5 along the boundary of the cubic domain
using a blue-red color scale to indicate the low and high scalar and distortion
values.

Intensity field Distortion field

Fig. 5. Intensity field (left) and distortion field (right) for synthetic data set sam-
pling function f(x, y, z) = sin(x) + sin(y) + sin(z) over a 653 grid.

The second dataset, called Neghip, is a simulation of the spatial probability
distribution of electrons in a high potential protein molecule. The knowledge
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of electron distribution within such molecules is important in pharmacology
to understand the interactions between molecules and an organism. The in-
hibition of some protein molecules can reduce complications in diseases such
as cataracts and neuropathies for diabetic subjects. The understanding of the
catalytic mechanism and the electrostatic potential of the molecule plays a
relevant role here. It may help to study, at the atomic scale, the transfer of elec-
trons and protons in complex biological processes such as oxidation/reduction
in relation to metallic ions by considering the reaction between hemoglobin
(containing iron ions) and the oxygen molecule.

In Figure 6, we show the intensity field and distortion field for the tetra-
hedral mesh extracted from the Neghip hierarchy at variable resolution cor-
responding to 0% approximation error. The mesh has 129 K vertices and
728 K tetrahedra. The range of colors used for visualization goes from blue
for low values to red for high values, with gray indicating mean values. Discrete
distortion highlights the growth behavior of the density scalar field, which is
maximal around the atoms. We see that the density field grows quickly around
atoms within small regions and then stabilizes its growth. Distortion becomes
nearly constant in such case. We observe also that, within regions where the
electron density has low values, many small regions have high distortion val-
ues. This indicates changes in the electron density and may be due to the
interference between adjacent atoms or to some artifacts in the processing of
the data. Regions in blue (for distortion) indicate that the scalar field grows
differently in different directions. This corresponds to saddle regions where
the convexity of the electron density field changes.

The third dataset, called CTA-Brain, is a CTA-scan of a human brain with
an aneurysm. Computed Tomographic Angiography (CTA) is a minimally
invasive technique that uses imaging technologies (e.g., X-rays) to explore the
structure of vessels and tissues. A contrast agent is generally used to produce
clear images. The original dataset has 512x512x120 vertices and measure the
intensity of the contrast agent. To show the behavior of the intensity field and
of distortion, we have extracted a variable-resolution mesh from the diamond
hierarchy, which has 1.74 million vertices and 9.52 million tetrahedra.

Figure 7 illustrates the dataset, where the scalar field corresponds to the
intensity of the contrast agent, and its distortion, through equally spaced
horizontal slices. The geometric structure of the scanned region is well repre-
sented by distortion. We see that most regions have gray or light blue color,
which indicates a uniform distribution of the contrast agent within the brain.
The regions with high distortion correspond to changes in the intensity of the
contrast product.

7.2 Distortion and Mesh Resolution

We now demonstrate the validity of distortion analysis on lower resolution
approximations by considering the distribution of distortion values over a set
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Fig. 6. Twelve equally spaced slices (along the z-axis) of the intensity field (left),
and the distortion field (right) of the Neghip dataset at 0% error. The colors of the
distortion field are scaled to highlight the extreme values.

of extracted meshes with increasingly fine resolution. For brevity, we show
results only on the two real data sets, Neghip and CT-Brain.

In the first case, we generate a diamond hierarchy ∆H based on the inten-
sity values of the 643 Neghip dataset, which contains 262 K vertices. The error
of a diamond δ is computed as the maximum difference between the intensity
values of all grid points within the domain of δ, and the value obtained by
linear interpolation over the vertices of δ’s tetrahedra. We extract a series of
meshes Σεi of uniform approximation error εi from ∆H , using threshold val-
ues of εi ∈ {30%, 10%, 5%, 2%, 1%, 0%} of the total error and then evaluate
the distortion of the vertices of these meshes.

Figure 8 shows the Cumulative Distribution Function (CDF) of the dis-
crete distortion (horizontal axis) of the vertices of each mesh. The sharp spike
in the CDF of all datasets around a null distortion value indicates that the
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Fig. 7. Seven equally spaced slices (along the z-axis) of the CTA-brain dataset
at 10% error illustrating the scalar field (left), and the distortion field (right). The
colors of the distortion field are scaled to highlight the extreme values.

vast majority of vertices have (nearly) null distortion. As the resolution in-
creases, this spike becomes steeper, indicating that the increased resolution is
distributed among regions with nearly null distortion. Thus, the distortion is
concentrated in relatively few vertices within the mesh, and appears promi-
nently in lower resolution approximations. For example, when ε = 0, more
than 94% of the 129 K vertices in Σ0% have distortion D(v) ≤ |1|, and for
ε = 2%, more than 83% of the 33 K vertices in Σ2% have distortion D(v) ≤ |1|.

Similarly, Figure 9 shows the CDF of meshes Σεi using threshold values of
εi ∈ {99%, 75%, 50%, 30%, 10%, 5%} extracted from the CTA-Brain dataset.
These meshes illustrate the same general trend as the Neghip approximations,
although they are a bit noisier since they are scanned images.

We have obtained similar results for several other datasets in other appli-
cation domains [45]. These experiments indicate that we can obtain a fairly
accurate understanding of the image via its discrete distortion even at lower
resolutions, without the need to compute the distortion on the full image.

7.3 Morse Decompositions

In this Subsection, we show Morse decompositions of the synthetic and real
data sets computed using the intensity and the distortion fields.
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Fig. 8. Cumulative distribution functions of distortion values (horizontal axis) over
increasingly fine meshes extracted from the Neghip dataset.
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Fig. 9. Cumulative distribution functions of distortion values (horizontal axis) over
increasingly fine meshes extracted from the CTA Brain dataset.

Let us consider the distribution of the intensity and distortion values for
the synthetic data set shown in Figure 5. Figure 10 shows the stable and
unstable Morse decompositions computed based on the intensity and on the
distortion fields. It is clear how the distribution of the intensity and of the
distortion values influences the corresponding segmentations. Both stable and
unstable Morse decompositions obtained from the intensity field consists of
1,331 cells and have a regular structure. The stable decomposition obtained
from the distortion field consists of 12,972 cells, while the unstable one consists
of 3,738 cells. The decomposition pattern in the stable and unstable distortion-
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based complex varies in different portions of the mesh. This is due to the
function sampling that is different from its period.

Stable decomposition Stable decomposition
of intensity field (1331 cells) of distortion field (12972 cells)

Unstable decomposition Unstable decomposition
of intensity field of distortion field

(1331 cells) (3738 cells)

Fig. 10. Morse decompositions for the synthetic data set defined by intensity
function f(x, y, z) = sin(x)+sin(y)+sin(z). Minima (stable) or maxima (unstable)
vertices are colored in red, vertices on the boundary of several regions in blue and
vertices within a region in yellow.

Figure 11 shows Morse decompositions built from the full-resolution tetra-
hedral mesh discretizing the Neghip dataset. We thresholded the visualization
along an isovalue to better illustrate the structure of the molecules. The stable
and unstable Morse decompositions obtained from the intensity field consist
of 104 cells and of 41 cells, respectively. The stable and unstable Morse decom-
positions obtained from the distortion field consist of 3,654 stable cells and
23,334 cells, respectively. Some components of the unstable decomposition
represent the location of atoms (i.e. maxima of the density) and the proper
space in which electrons revolve around. Due to the interference of electron
density of adjacent atoms, some components are created and correspond to
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some maxima of the density field. These components do not properly contain
atoms.

Neghip field Neghip distortion

Stable decomposition Stable decomposition
of original field (104 cells) of distortion field (3,654 cells)

Unstable decomposition Unstable decomposition
of original field of distortion field

(41 cells) (23,334 cells)

Fig. 11. Original field and distortion field, and segmentations, for variable reso-
lution Neghip data set at 0% approximation error. Segmentations are shown with
minima (stable) or maxima (unstable) vertices in red, vertices on the boundary of
more than one region in blue and vertices within a region in yellow
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Figure 12 illustrates the intensity field, the corresponding distortion val-
ues and the segmentations obtained from a uniform resolution mesh Σ10%

extracted from the CTA-Brain dataset (see also a view as set of slices in Fig-
ure 7). The decomposition obtained from the intensity field consists of 37,631
stable cells and of 23,835 unstable cells, while the decomposition obtained
from the distortion one consists of 136,641 stable cells and 128,687 unstable
cells. Figure 13 shows the largest segments from the segmentations. Observe
that, while the unstable regions are more structured and follow the field val-
ues, the stable regions are much more influenced by the boundary and by the
less relevant regions of the original scalar field. The former therefore seem to
provide a more meaningful decomposition. The large number of cells in the
unstable decomposition computed on the basis of distortion is due to the fact
that there is a large number of small areas in which the concentration of the
contrast agent changes abruptly (i.e., distortion has a maximum).

8 Concluding Remarks

We have presented an innovative approach to the analysis of 3D images based
on the notion of discrete distortion, which generalizes discrete curvature to
triangulated hypersurfaces in 4D space, and on Morse decomposition.

We have proposed the use of a multi-resolution model based on clusters of
tetrahedra, called diamonds, which enables the analysis of a 3D image through
crack-free approximations encoded as tetrahedral meshes. One important as-
pect of using mesh-based multi-resolution models is that the image can be
analyzed by using much fewer samples than in the full image. This facilitates
our analysis of large 3D volume datasets by using significantly fewer resources.
The other aspect that we have shown through our experiments is the utility
of discrete distortion in analyzing approximated images, thus giving good in-
sights about the field behavior already at low resolutions.

We are currently investigating methods for incorporating distortion into
the selective refinement query, i.e., the operation that extracts a variable-
resolution mesh from the multi-resolution model, according to user-defined
error criteria. This would enable the extraction of variable-resolution tetra-
hedral meshes with higher resolution in regions with greater distortion while
reducing the resolution in regions with lower distortion.

The definition of discrete distortion can also be extended to define a dis-
tortion tensor, when multiple scalar fields exist in the same domain (e.g.,
pressure, temperature, density). We plan to define a distortion tensor as well
as concentrated curvature tensor in such a case, and use them to study the
effects and the interactions among the various fields.

Discrete distortion can also be used in biochemistry to analyze the chemi-
cal structure of a molecule from the topological and geometrical points of view.
Atoms and bonds in a molecule can be geometrically modeled as a tetrahe-
dralized shape, where vertices correspond to atoms and edges to bonds. We
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Brain field Brain distortion

Stable decomposition Stable decomposition
of original field (37,631 cells) of distortion field (136641 cells)

Unstable decomposition Unstable decomposition
of original field of distortion field
(23,835 cells) (128,687 cells)

Fig. 12. Original field and distortion field, and segmentations, for CTA-brain data
set at 10% resolution.
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Brain field

Stable regions with number Unstable regions with number
of tetra between of tetra more

13,000 and 100,000 than 20,000

Fig. 13. Stable and unstable decompositions using a threshold to visualize distinct
regions formed by a large number of tetrahedra.

believe that discrete distortion can provide a new approach to understand
chemical reactions, the geometric structure of molecules that are isomers, and
properties of crystals.
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