IA*:

An Adjacency-Based Representation for Non-Manifold Simplicial Shapes in Arbitrary Dimensions

David Canino
Leila De Floriani
University of Genova

Kenneth Weiss

University of Maryland, College Park

Motivation

> Generalized digital shapes:

Non-manifold singularity
> are discretized through simplicial complexes over an arbitrary underlying domain
> can contain non-manifold singularities
> can contain non-regular parts of different dimensionalities
$>$ Arise in many processes
> Intentional
> e.g. idealization process, shape understanding
> Unintentional
> e.g. during mesh generation or manipulation

Data Structures for Simplicial Meshes

Taxonomy (partial)

> Dimension-specific vs. dimension-independent
> Manifold vs. non-manifold vs. non-regular
> Incidence-based vs. adjacency-based
> Efficient support for topological relations

TOPOLOGICAL RELATIONS

> Describe the connectivity of the mesh's elements
$\mathrm{R}_{\mathrm{p}, \mathrm{q}}$ - Boundary relations ($p<q$)
> Set of q-simplices that are a face of a given p-simplex
$\mathrm{R}_{\mathrm{q}, \mathrm{p}}$ - Co-boundary relations ($p<q$)
> Set of simplices that have a given simplex as a face
$\mathrm{R}_{\mathrm{p}, \mathrm{p}}$ - Adjacency relations
> Set of p-simplices that adjacent to a given simplex along a p-1 face ($p>0$)
> Set of vertices connected by an edge ($p=0$)

IA*: GENERALIZED IndEXED DATA

 STRUCTURE WITH ADJACENCIES> Adjacency-based representation
> General shapes
> Allows manifold, non-regular and non-manifold
$>$ Dimension-independent
$>d$-dimensional shapes in $\mathrm{R}^{\mathrm{n}}, \mathrm{d} \leq \mathrm{n}$
> Agnostic about embedding in underlying space
> Efficient retrieval of all topological relations
> Scalable with respect to manifold case
> No overhead in manifold regions
> Supports shape editing operations
> Compact encoding
$>$ with respect to the state of the art

REPRESENTATION

> Entities
> Vertices
> Top simplices
$>$ Simplices not on boundary of another simplex
> Encoded in terms of their vertices

> Topological Relations
$>\mathrm{R}_{\mathrm{k}, 0}^{*}$ - Boundary relations for top k-simplices ($k>0$)
$>\mathrm{R}_{0, \mathrm{k}}^{*}$ - Partial co-boundary relations for vertices ($k>0$) One top simplex in each (k-1)-connected component in link
$>\mathrm{R}_{\mathrm{k}, \mathrm{k}}^{*}$ - Adjacency relations for top k-simplices ($k>1$)
$>\mathrm{R}_{\mathrm{k}-1, \mathrm{k}}^{*}$ - Partial co-boundary relations for non-manifold k-1 simplices incident to top k-simplices ($k>1$)

EXAMPLE

$$
\begin{aligned}
& \mathrm{R}_{0,1}^{*}(v)=\{w\} \\
& \mathrm{R}_{0,2}^{*}(v)=\left\{f_{1}\right\} \\
& \mathrm{R}_{0,3}^{*}(v)=\left\{t_{1}\right\} \\
& \mathrm{R}_{2,2}^{*}\left(f_{1}\right)=\left\{\mathrm{R}_{1,2}^{*}(e), f_{5}, \varnothing\right\} \\
& \quad \downarrow \\
& \mathrm{R}_{1,2}^{*}(e)=\left\{f_{1}, f_{2}, f_{3}, f_{4}\right\}
\end{aligned}
$$

Key observation: Encode collection of top p-simplices incident to a non-manifold $p-1$ simplex as a single unit

Storage Results (Highlights)

> Compared to state of the art
> Dimension-independent, incidence-based representation
IG - Incidence Graph
IS - Incidence Simplicial
> Dimension-specific, adjacency-based representation
TS -Triangle-Segment ($d=2$ in R^{3})
NMIA -Non-manifold incidence-based data structure with Adjacencies ($d=3$ in R^{3})
> Testbed of 62 datasets
$>d=\{2,3\}$ in R^{3}
$>$ manifold, non-manifold and non-regular

Storage Results (Highlights)

$$
d=2 \text { in } R^{3}
$$

- ~ 1.8 times smaller than IG
- ~ 1.5 times smaller than IS
- $\sim 5 \%$ smaller than TS
$d=3$ in R^{3}
- ~3.2 times smaller than IG
- ~2.2 times smaller than IS -
- $\sim 3 \%$ smaller than NMIA
$>$ IA* is most compact in all cases

Querying Results (Highlights)

$>$ Boundary relations
> Expressed as tuples of vertices in constant time
> 15% faster than state of the art incidence-based representations
$>$ Co-boundary relations
$>\mathrm{R}_{0, \mathrm{k}}(v)$ - Retrieved w.r.t top simplices incident to vertex in time linear in star of vertex
> 20-30\% faster in 2D; 30-60\% faster in 3D
$>\mathrm{R}_{\mathrm{j}, \mathrm{k}}(\sigma)$ - based on retrieval of a vertex in boundary of σ
> 10-15\% slower than incidence-based representations
$>$ Adjacency relations
$>\mathrm{R}_{\mathrm{k}, \mathrm{k}}(\sigma)$ - combine boundary and co-boundary relations
$>$ Time is linear in number of simplices in star of a vertex of σ

CONCLUSION

> First adjacency-based, dimension-independent approach for general simplicial meshes
> Most compact topological representation for general meshes
> No storage overhead with respect to IA data structure when presented with manifold dataset
> Does not encode non-top simplices
> Might not be applicable in certain applications
> e.g. finite element analysis
$>$ Supports editing operations (not discussed)
> Vertex-pair contraction
> Plan to release as part of C++ open source meshing library
> Mangrove TDS

Thank You

Anonymous reviewers
National Science Foundation

