

AN ADJACENCY-BASED REPRESENTATION FOR NON-MANIFOLD SIMPLICIAL SHAPES IN ARBITRARY DIMENSIONS

David Canino Leila De Floriani University of Genova

Kenneth Weiss

University of Maryland, College Park

Shape Modeling International The Interdisciplinary Center, Herzliya, Israel

MOTIVATION

Generalized digital shapes:

- > are discretized through simplicial complexes over an arbitrary underlying domain
- > can contain *non-manifold* singularities
- can contain *non-regular* parts of different dimensionalities
- > Arise in many processes
 - Intentional
 - > e.g. idealization process, shape understanding
 - Unintentional
 - > e.g. during mesh generation or manipulation

Non-manifold singularity

DATA STRUCTURES FOR SIMPLICIAL MESHES

Taxonomy (partial)

- > Dimension-specific vs. dimension-independent
- > Manifold vs. non-manifold vs. non-regular
- > Incidence-based vs. adjacency-based
- Efficient support for topological relations

TOPOLOGICAL RELATIONS

- Describe the connectivity of the mesh's elements
- $R_{p,q}$ Boundary relations (p < q)
 - Set of q-simplices that are a face of a given p-simplex
- $R_{q,p}$ Co-boundary relations (p<q)
 - > Set of simplices that have a given simplex as a face
- $R_{p,p}$ Adjacency relations
 - Set of *p*-simplices that adjacent to a given simplex along a *p*-1 face (*p*>0)
 - Set of vertices connected by an edge (p=0)

IA*: GENERALIZED INDEXED DATA STRUCTURE WITH ADJACENCIES

- > Adjacency-based representation
- General shapes
 - > Allows manifold, non-regular and non-manifold
- > Dimension-independent
 - → d-dimensional shapes in \mathbb{R}^n , d≤n
 - > Agnostic about *embedding* in underlying space
- > *Efficient retrieval* of all topological relations
- Scalable with respect to manifold case
 - No overhead in manifold regions
- Supports shape editing operations
- Compact encoding
 - with respect to the state of the art

REPRESENTATION

- Entities
 - > Vertices
 - > Top simplices
 - Simplices not on boundary of another simplex
 - Encoded in terms of their vertices

Topological Relations

- > $R^*_{k,0}$ Boundary relations for **top** k-simplices (k>0)
- R^{*}_{0,k} Partial co-boundary relations for vertices (k>0)
 One top simplex in each (k-1)-connected component in link
- > $R^*_{k,k}$ Adjacency relations for **top** k-simplices (k>1)
- R^{*}_{k-1,k} Partial co-boundary relations for non-manifold k-1 simplices incident to top k-simplices (k>1)

EXAMPLE

$$R^{*}_{0,1}(v) = \{ w \}$$

$$R^{*}_{0,2}(v) = \{ f_{1} \}$$

$$R^{*}_{0,3}(v) = \{ t_{1} \}$$

$$R^{*}_{2,2}(f_{1}) = \{ R^{*}_{1,2}(\mathcal{C}), f_{5}, \emptyset \}$$

$$\sqrt{P}$$

$$R^{*}_{1,2}(\mathcal{C}) = \{ f_{1}, f_{2}, f_{3}, f_{4} \}$$

Key observation: Encode collection of top *p*-simplices incident to a non-manifold *p*-1 simplex as a single unit

STORAGE RESULTS (HIGHLIGHTS)

Compared to state of the art

Dimension-independent, incidence-based representation

IG – Incidence Graph

IS – Incidence Simplicial

Dimension-specific, adjacency-based representation

TS – Triangle-Segment (*d*=2 in R³)

NMIA –Non-manifold incidence-based data structure with Adjacencies (d=3 in R³)

Testbed of 62 datasets

➢ d={2,3} in R³

manifold, non-manifold and non-regular

STORAGE RESULTS (HIGHLIGHTS)

d=2 in \mathbb{R}^3

- ~1.8 times *smaller* than *IG*
- ~1.5 times *smaller* than *IS*
- ~5% *smaller* than **TS**

- d=3 in R^{3}
- ~3.2 times smaller than *IG*
- ~2.2 times smaller than *IS*
- $\sim 3\%$ smaller than **NMIA**

IA* is most compact in all cases

QUERYING RESULTS (HIGHLIGHTS)

Boundary relations

- Expressed as *tuples* of vertices in constant time
- > 15% *faster* than state of the art incidence-based representations

Co-boundary relations

- R_{0,k}(v) Retrieved w.r.t top simplices incident to vertex in time linear in star of vertex
 - > 20-30% *faster* in 2D; 30-60% faster in 3D
- R_{j,k}(σ) based on retrieval of a vertex in boundary of σ
 10-15% *slower* than incidence-based representations
- > Adjacency relations
 - > $R_{k,k}(\sigma)$ combine boundary and co-boundary relations
 - > Time is linear in number of simplices in star of a vertex of σ

CONCLUSION

- First adjacency-based, dimension-independent approach for general simplicial meshes
- Most compact topological representation for general meshes
 - No storage overhead with respect to IA data structure when presented with manifold dataset
- Does not encode non-top simplices
 - Might not be applicable in certain applications
 - > e.g. finite element analysis
- Supports editing operations (not discussed)
 - Vertex-pair contraction
- Plan to release as part of C++ open source meshing library
 - Mangrove TDS

THANK YOU

Anonymous reviewers National Science Foundation