

IA*: An Adjacency-Based Representation for Non-Manifold Simplicial Shapes in Arbitrary Dimensions

David Canino · Leila De Floriani · Kenneth Weiss

canino@disi.unige.it

deflo@disi.unige.it

kweiss@cs.umd.edu

BACKGROUND

Need to represent and manipulate 2D, 3D and higher dimensional simplicial complexes describing *multi-dimensional shapes with complex topology*

➤Generalized digital shapes:

- are discretized through *simplicial complexes* over an arbitrary underlying domain
- > can contain *non-manifold* singularities

Can contain *non-regular* parts

CONTRIBUTION

- The Generalized Indexed data structure with Adjacencies (IA*):
 - dimension-independent adjacency-based data structure for general shapes
 - agnostic about *embedding* of the input shape in the underlying space
 - encodes only vertices and top simplices (simplices not on the boundary of other simplices)
 - > optimal retrieval of all topological relations

REPRESENTATION

Encode only vertices and top simplices

 \succ For each vertex v:

- $\mathbf{R}^*_{0,1}(\mathbf{v})$: all top 1-simplices incident in v
- R^{*}_{0,p}(v): one top p-simplex (with p>1) for each
 (p-1)-connected component of the link of v
- > For each top *p*-simplex σ :
 - **R**_{p,0}(σ): all vertices in the boundary of σ **R**^{*}_{p,p}(σ): all top p-simplices adjacent to σ along a (*p*-1)-face of σ

of different dimensionalities

Manifold shape

Non-manifold shape with parts of different dimensionalities

STORAGE COSTS

- > We compared storage costs of IA* with
 - > Incidence-based data structures (*IG* and *IS*)
 - Dimension-specific adjacency-based data structures (TS in 2D and NMIA in 3D)

Model IG IS TS NMIA IA*

- > scalable with respect to manifold case
- > supports *shape editing* operations
- > more compact than state of the art
 - Incidence Graph (IG) [Ede87] and Incidence Simplicial (IS) [DFHPC10]
 - dimension-specific adjacency-based
 Triangle Segment (TS) [DFMPS04] in 2D
 Non-manifold Incidence with Adjacency
 (NMIA) [DFMPS04] in 3D

TOPOLOGICAL QUERIES

- > **Boundary relations** for *p*-simplex σ are retrieved by generating faces of σ , requiring constant time:
 - ➢ IA* is 15% *faster* than IG and IS
- Co-boundary relations of type R_{0,q}(v) are retrieved with respect to top simplices incident in v, requiring time linear in the number of top simplices in the star

- > Key observation
 - Encode top *p*-simplices in non-manifold singularities along (*p*-1)-faces of σ
 collectively through R^{*}_{p-1,p}(σ) relation
- IA* reverts to IA data structure [PBCF93] when presented with manifold shape

Armchair	127K	101K	69.4K	-	69.2K
Balance	96K	76K	51.9K	-	51.9K
Carter	95K	75K	53K	-	52K
Chandelier	220K	174K	121K	-	120K
Robot	80K	63K	46K	-	44.9K
Ballon	44K	33K	-	18K	18K
Flasks	104K	74K	-	32	31.8K
Gargoyle	271K	193K	-	83K	83K
Rings	231K	164K	-	68K	67.6K
Teapot	219K	162K	-	84.7K	84K

Storage costs are expressed in terms of the number of pointers

- Over a testbed of 62 manifold, non-regular and non-manifold shapes in 2D and 3D, IA* is the *most compact* data structures:
 - > 1.5 times *smaller* than the IS for 2D models
 - > 1.8 times *smaller* than the IG for 2D models
 - > 2.2 times *smaller* than the IS for 3D models
 - > 3.2 times *smaller* than the IG for 3D models

of vertex *v:*

IA* is 20% *faster* than IG and 30% *faster* than IS for 2D models

IA* is 35% *faster* than IG and 62% *faster* than IS for 3D models

> **Co-boundary relations** of type $\mathbf{R}_{p,q}(\sigma)$, with $p \neq 0$, are based on the retrieval of the $\mathbf{R}_{0,q}(v)$ relation for a vertex v of simplex σ , requiring time linear in the number of *top simplexes* incident in v:

- > IA* is 15% *slower* than IG for R_{1,q}
- > IA* is 11% *slower* than IS for R_{1,q}
- Solution Adjacency relations for a simplex σ are retrieved by combining boundary and co-boundary relations and require time linear in the number of top simplices incident in one vertex of σ .

REFERENCES

- L. De Floriani, A. Hui: *A scalable data structure for three dimensional non-manifold objects,* Symposium on Geometry Processing, 2003.
- L. De Floriani, A.Hui, D. Panozzo, D. Canino: *A dimension-independent data structure for simplicial complexes*, International Meshing Roundtable, 2010.
- L. De Floriani, P. Magillo, E. Puppo, D. Sobrero: A multi-resolution topological representation for non-manifold meshes,

 $R^{*}_{0,1}(v) = \{w\},\$ $R^{*}_{0,2}(v) = \{f_{1}, f_{5}\},\$ $R^{*}_{0,3}(v) = \{t_{1}\},\$ $R^{*}_{2,2}(f_{1}) = R^{*}_{1,2}(e),\$ $= \{f_{1}, f_{2}, f_{3}, f_{4}\},\$

H. Edelsbrunner: Algorithms in Combinatorial Geometry, Springer, 1987.

A. Paoluzzi, F. Bernardini, C. Cattani, V. Ferrucci: Dimension-independent modeling with simplicial complexes,

