canino@disi.unige.it

kweiss@cs.umd.edu

BACKGROUND

$>$ Need to represent and manipulate 2D, 3D and higher dimensional simplicial complexes describing multi-dimensional shapes with complex topology
$>$ Generalized digital shapes:
$>$ are discretized through simplicial complexes over an arbitrary underlying domain
$>$ can contain non-manifold singularities
$>$ can contain non-regular parts
of different dimensionalities

Manifold shape

Non-manifold shape with parts of different dimensionalities

Storage costs

$>$ We compared storage costs of IA* with
$>$ Incidence-based data structures (IG and $I S$)
$>$ Dimension-specific adjacency-based data structures (TS in 2D and NMIA in 3D)

Model	IG	IS	TS	NMIA	IA ${ }^{*}$
Armchair	127 K	101 K	69.4 K	-	69.2 K
Balance	96 K	76 K	51.9 K	-	51.9 K
Carter	95 K	75 K	53 K	-	52 K
Chandelier	220 K	174 K	121 K	-	120 K
Robot	80 K	63 K	46 K	-	44.9 K
Ballon	44 K	33 K	-	18 K	18 K
Flasks	104 K	74 K	-	32	31.8 K
Gargoyle	271 K	193 K	-	83 K	83 K
Rings	231 K	164 K	-	68 K	67.6 K
Teapot	219 K	162 K	-	84.7 K	84 K

Storage costs are expressed in terms of the number of pointers
$>$ Over a testbed of 62 manifold, non-regular and non-manifold shapes in 2D and 3D,
IA* is the most compact data structures:
>1.5 times smaller than the IS for 2D models
>1.8 times smaller than the IG for 2D models
>2.2 times smaller than the IS for 3D models
>3.2 times smaller than the IG for 3D models
$>5 \%$ smaller than the TS for 2D models
$>3 \%$ smaller than the NMIA for 3D models

Contribution

> The Generalized Indexed data structure with Adjacencies (IA*):
$>$ dimension-independent adjacency-based data structure for general shapes
$>$ agnostic about embedding of the input shape in the underlying space
$>$ encodes only vertices and top simplices (simplices not on the boundary of other simplices)
$>$ optimal retrieval of all topological relations
$>$ scalable with respect to manifold case
$>$ supports shape editing operations
$>$ more compact than state of the art
$>$ dimension-independent incidence-based Incidence Graph (IG) [Ede87] and Incidence Simplicial (IS) [DFHPC10]
$>$ dimension-specific adjacency-based Triangle Segment (TS) [DFMPSO4] in 2D Non-manifold Incidence with Adjacency (NMIA) [DFMPSO4] in 3D

TOPOLOGICAL QUERIES

$>$ Boundary relations for p-simplex σ are retrieved by generating faces of σ, requiring constant time:
\Rightarrow IA* is 15% faster than IG and IS
$>$ Co-boundary relations of type $\mathbf{R}_{0, \mathrm{q}}(v)$ are retrieved with respect to top simplices incident in v, requiring time linear in the number of top simplices in the star of vertex v :
$>$ IA* is 20% faster than IG and 30% faster than IS for 2D models
\Rightarrow IA* is 35% faster than IG and 62% faster than IS for 3D models
\Rightarrow Co-boundary relations of type $\mathbf{R}_{\mathrm{p}, \mathrm{q}}(\sigma)$, with $p \neq 0$, are based on the retrieval of the $\mathbf{R}_{0, \mathrm{q}}(v)$ relation for a vertex v of simplex σ, requiring time linear in the number of top simplexes incident in v :

$$
\begin{aligned}
& >\mathrm{IA}^{*} \text { is } 15 \% \text { slower than IG for } \mathrm{R}_{1, \mathrm{q}} \\
& >\mathrm{IA}^{*} \text { is } 11 \% \text { slower than IS for } \mathrm{R}_{1, \mathrm{q}}
\end{aligned}
$$

$>$ Adjacency relations for a simplex σ are retrieved by combining boundary and co-boundary relations and require time linear in the number of top simplices incident in one vertex of σ.

References

L. De Floriani, A. Hui: A scalable data structure for three dimensional non-manifold objects, Symposium on Geometry Processing, 2003.
L. De Floriani, A.Hui, D. Panozzo, D. Canino: A dimension-independent data structure for simplicial complexes, International Meshing Roundtable, 2010.
L. De Floriani, P. Magillo, E. Puppo, D. Sobrero: A multi-resolution topological representation for non-manifold meshes, CAD Journal, 2004.
H. Edelsbrunner: Algorithms in Combinatorial Geometry, Springer, 1987.
A. Paoluzzi, F. Bernardini, C. Cattani, V. Ferrucci: Dimension-independent modeling with simplicial complexes, ACM Transactions on Graphics, 1993.

