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Abstract. In an effort to guide optimizations and detect performance
regressions, developers of large HPC codes must regularly collect and
analyze application performance profiles across different hardware plat-
forms and in a variety of program configurations. However, traditional
performance profiling tools mostly focus on ad-hoc analysis of individ-
ual program runs. Ubiquitous performance analysis is a new approach to
automate and simplify the collection, management, and analysis of large
numbers of application performance profiles. In this regime, performance
profiling of large HPC codes transitions from a sporadic process that of-
ten requires the help of experts into a routine activity in which the entire
development team can participate. We discuss the design and implemen-
tation of an open source ubiquitous performance analysis software stack
with three major components: the Caliper instrumentation library with
a new API to control performance profiling programmatically; Adiak,
a library for automatic program metadata capture; and SPOT, a web-
based visualization interface for comparing large sets of runs. A case
study shows how ubiquitous performance analysis has helped the de-
velopers of the Marbl simulation code for over a year with analyzing
performance and understanding regressions.
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1 Introduction

Lawrence Livermore National Laboratory hosts several application teams who
develop and maintain large multi-physics simulation codes. These production
codes are under continuous development, run in a wide variety of configura-
tions, and on complex, heterogeneous HPC systems where frequent hardware
and software updates create a constantly evolving execution environment. To
guide optimizations and detect unexpected performance problems, developers
must proactively monitor the performance of their codes throughout the appli-
cation lifecycle, both during development and in production. To support this
need, we have developed and deployed software infrastructure to simplify and
automate application-level performance data collection, storage, and analysis.

Traditional HPC performance profiling tools typically focus on analyzing in-
dividual program runs. They employ powerful mechanisms to collect detailed
data for finding performance bottlenecks, but are often difficult to automate
or too intrusive to be used in production runs. With ubiquitous performance
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analysis, we instead aim to collect application performance data whenever pos-
sible, and provide a central interface for developers to analyze the collected data.
We address several challenges to accomplish this. First, we want to avoid com-
plex measurement setup or postprocessing steps: performance profiling should
be available for any user, at any time, and for any run. We therefore integrate
a performance profiling library into applications and control measurements pro-
grammatically, for example through a command-line option. As we collect data
from many runs, the performance analysis focus shifts from analyzing individual
program runs to comparing data across runs or across HPC platforms. To facili-
tate this, we have developed a web interface with novel analysis and visualization
tools for analyzing large collections of runs. Finally, to effectively work with such
collections, we need descriptive metadata about the program and system config-
uration for each run. We collect this data automatically with code annotations
using a new metadata collection library.

To adopt ubiquitous performance analysis, application developers augment
their codes with instrumentation markers, metadata annotations, and initial-
ization code to configure and activate performance profiling. With performance
measurement capabilities built into applications, it is easy to enable profiling
in production runs or in automated workflows like nightly Continuous Integra-
tion (CI) tests. It also simplifies performance profiling for application end users,
who may not be familiar with traditional developer-oriented HPC profiling tools.
Performance analysts can thus observe real program usage in practice and iden-
tify problems due to misconfiguration. Central data storage and access through
our analysis web frontend simplifies sharing of performance data across a devel-
opment team and with other stakeholders. Developers are no longer limited to
infrequent ad-hoc profiling of individual runs, but can analyze a complete record
of program performance covering many different program configurations over
the entire lifespan of the code. Stated simply, ubiquitous performance analysis
represents a shift in how we view performance tracking within long-lived HPC
codes. It transitions performance analysis from a process that the team performs
sporadically, often only with the help of external experts, to a routine activity in
which the entire development team can easily, or even unknowingly, participate.

Contributions. Our ubiquitous performance analysis system builds upon the
Caliper instrumentation and profiling library [11], whose low runtime overhead
affords it to be compiled into HPC applications. In this paper, we introduce
additional frontend and backend components to implement a full ubiquitous
performance analysis software stack:

– ConfigManager, a profiling control API in Caliper to let applications control
performance measurements programmatically;

– Adiak, a library for collecting user-defined metadata; and
– SPOT, a web-based data analysis and visualization interface with novel vi-

sualizations to explore large collections of runs.

More importantly, we explain the motivation, key concepts, and design be-
hind the ubiquitous performance analysis approach, and discuss our experiences
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implementing ubiquitous performance analysis in the LULESH proxy app and
the Marbl production code.

2 State of the Art

In this section, we compare our approach to the current state-of-the-art in tools
and methodologies for HPC performance analysis.

There is a wide range of community-driven and commercial HPC performance
analysis tools covering different measurement methodologies, systems, and use
cases. Frameworks like HPCToolkit [7], Score-P [22], TAU [30], and OpenSpeed-
Shop [32] collect detailed per-thread execution profiles or traces for in-depth
analyses, such as automatic bottleneck detection [14] or profile analysis [15,24].
Vampir [12] and Paraver [27] visualize large-scale parallel execution and commu-
nication traces. Many tools support the collection of CPU, GPU, and on-core
hardware counters via PAPI [26] or similar APIs, as well as analysis of communi-
cation, multithreading, and GPU usage through the MPI profiling interface, the
OpenMP tools interface [13], and NVIDIA’s CUPTI API [4]. Generally, these
tools are best characterized as performance debugging tools, designed around
interactive measure-analyze-refine debugging workflows and focused on finding
root causes of performance bottlenecks for individual program runs. Measure-
ment setup can be complex. Instrumentation-based tools like Score-P and TAU
require the target code to be re-compiled with instrumentation turned on, while
sampling-based tools like HPCToolkit require postprocessing steps to map bi-
nary addresses to symbol names. The tools use custom profile and trace data
formats, and require tool-specific graphical applications for data analysis. Due
to the complex measurement setup, usage of performance debugging tools within
regular application development and production workflows is often limited, and
relegated to expert users with specific performance debugging needs.

Many HPC codes employ some form of built-in lightweight always-on profil-
ing to keep track of time spent in major application subsystems or kernels for
monitoring and benchmark purposes. Some codes use libraries like GPTL [29],
Caliper [11], or TiMemory [23] for this purpose, while others include custom time
measurement solutions, typically using small marker functions or macros placed
around code regions of interest. Our system can replace custom lightweight tim-
ing solutions, and offers rich measurement capabilities that can be activated by
the application without complex setup steps.

Performance data management tools such as PerfDMF [16] and PerfTrack [18,
19, 21] provide the ability to analyze and compare performance data collected
from different runs of an application. PerfDMF provides robust, interoperable
components for performance data management. PerfDMF is the SQL-based stor-
age backend for PerfExplorer2 [17], a data mining framework with capabilities
to correlate performance data and metadata, allowing many types of analyses to
compare performance data from multiple experiments (e.g., scaling studies). The
PerfTrack performance experiment management tool also uses a SQL database
to store profile data from multiple experiments. It includes interfaces to the data
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store, a GUI for interactive analysis, and modules to automatically collect ex-
periment metadata. The IPM [31] performance monitoring framework gathers
MPI function profiles together with environment and application information for
cross-run performance comparisons such as scaling studies. Ubiquitous perfor-
mance analysis builds upon many of the elements developed in these performance
data managers. We provide an analysis and visualization web frontend to access
data without specialized GUI tools, and a library for collecting user-defined pro-
gram metadata automatically.

Some commercial cloud and data center operators have developed in-house
automatic performance analysis solutions for large-scale distributed applications.
Among the ones that are known are Alibaba’s P-Tracer [25] and Google’s Google-
Wide Profiling [28] (GWP). P-Tracer samples call-stack traces from applications,
while GWP continuously records performance data, including application-level
call-stack profiles, across Google data centers. Both P-Tracer and GWP provide
web-based query interfaces for data analysis. Unlike our system, P-Tracer and
GWP are proprietary, and lack the ability to compare performance based on
application-specific metadata (e.g., program configuration).

3 Ubiquitous Performance Analysis

Ubiquitous performance analysis aims to simplify application performance anal-
ysis for HPC software development teams, and integrate it better into their
software development workflows. This section discusses our approach in detail.

3.1 Overview

The major components of our system are the Caliper instrumentation and pro-
filing library [11], the Adiak metadata collection library [1], and the SPOT web
frontend [6]. Application developers integrate Caliper and Adiak into their codes
by marking major components (kernels, application phases) with Caliper’s anno-
tation macros and exporting program metadata with Adiak. Performance mea-
surements can then be enabled by the application through Caliper’s new Con-
figManager API. Caliper can perform lightweight always-on time profiling of the
annotated code regions, but also collect data for more sophisticated performance
analysis experiments. Performance data for an application run is initially written
to a file, which can be copied to a directory or imported into a SQL database.
Users then analyze the collected performance data in SPOT. Policies for instru-
mentation, performance measurement, and data collection are defined by the
application developers and can be tailored to each code. Performance analysts
work together with application developers to define appropriate strategies.

3.2 Code Instrumentation

We primarily rely on manual source-code instrumentation for application pro-
filing, where developers place annotation macros into the source code to mark
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code regions of interest. Many performance debugging tools use symbol transla-
tion or automatic instrumentation approaches which do not require source code
modifications for profiling. However, for our purposes, manual instrumentation
provides distinct advantages:

– Control. Manual instrumentation allows for precise control of measurement
granularity. Automatic instrumentation methods easily over- or under-ins-
trument programs, resulting in high measurement overheads or clutter.

– Interpretability. Manual annotations describe high-level logical program ab-
stractions such as kernels or phases that developers are familiar with. Auto-
mated approaches that rely on compiler-generated identifiers often produce
obscure associations, particularly with modern C++ template abstractions.

– Consistency. Much of our work involves performance comparisons between
different program versions. Identifiers like function names and source line
numbers change frequently during development, making comparisons based
on such associations difficult. In contrast, the logical program structure ex-
pressed in manually instrumented regions typically remains much more sta-
ble, allowing for meaningful performance comparisons over long time spans.

– Reliability. Many traditional profiling tools rely on binary analysis and the
DWARF debugging information to correlate performance metrics to code.
This is a common source of complexity and fragility, as not all compilers
prioritize correct DWARF information or easily analyzable binary code. By
relying on manual instrumentation with tight application integration, we can
avoid the traditional attribution complexity and easily integrate our profiling
infrastructure with an application’s regular testing framework.

The placement of instrumentation annotations follows the logical subdivi-
sions of the code, such as computational kernels and communication or I/O
phases. While the one-time setup costs for adding instrumentation annotations
could be prohibitive for one-off performance debugging tasks, they are less of
a concern for implementing long-term, continuous monitoring strategies. The
annotations are not meant to pinpoint specific bottlenecks, but should allow
developers to monitor and study the performance evolution of the code. If de-
velopers find performance issues in an annotated code region and need more
detailed information, they can conduct follow-up experiments with Caliper’s
complementary sampling-based measurement mechanisms or third-party perfor-
mance debugging tools to identify root causes.

The Caliper library provides high-level macros to mark functions, loops, or
arbitrary code regions in C, C++, and Fortran programs. In addition, many of
LLNL’s large, long-lived codes already have existing instrumentation for light-
weight timing functionality, which we can adapt to invoke Caliper calls instead.
Caliper preserves the nesting of stacked regions, and combines annotations from
independent components (e.g., libraries), providing complete context informa-
tion for the combined program across all layers of the software stack. Once in
place, the annotations can stay in the code permanently. New annotations can
be added incrementally as needed.
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3.3 ConfigManager: A Measurement Control API in Caliper

Complementing the instrumentation API, Caliper includes a wide range of pro-
filing capabilities. Essentially, Caliper serves as a built-in profiling tool embedded
in the application codes.

We have enhanced Caliper with the ConfigManager API that lets applica-
tions control performance profiling activities programmatically. ConfigManager
accepts profiling commands in the form of short configuration strings. This con-
figuration string is typically provided by the user as an application configuration
file or as a command-line parameter. The configuration specifies an experiment,
which determines the kind of profiling to be performed, and options to cus-
tomize output or enable additional functionality. Some experiments print human-
readable output, while others write machine-readable files for post-mortem anal-
ysis in SPOT or other tools. For example, runtime-report prints a tree with
the time spent in the instrumented regions; hatchet-region-profile writes a
per-thread region time profile for processing with the Hatchet call-tree analysis
library [9]; event-trace records a timestamp trace of enter and leave events
for the instrumented regions; and spot writes a region time profile for analysis
with the SPOT web interface. In addition to basic runtime profiling, Caliper
provides advanced measurement functionality for specific analyses that can be
enabled via runtime options for the selected configuration. Available options in-
clude time-series analysis for loops, MPI function profiling, memory high-water
mark analysis, I/O profiling, CUDA profiling, hardware-counter access, and top-
down analysis for Intel CPUs. Measurements are only enabled on demand, and
we take care to avoid interference with production runs or third-party profiling
and tracing tools.

The ability to enable complex profiling configurations through a simple ap-
plication switch greatly simplifies performance measurements, especially for ap-
plication end users. Some of Caliper’s built-in experiments support basic per-
formance debugging tasks: Examples include call-path sampling experiments to
capture application details beyond user-defined source code annotations. Caliper
also interoperates with other performance tools. For example, we provide adapters
that forward Caliper annotations to third-party instrumentation libraries, so that
the Caliper-annotated regions are visible in tools like NVIDIA NSight or Intel
VTune - a tremendous benefit for developers who regularly use these specialized
tools on large codes. In turn, Caliper is available as a backend for the ultra
low-overhead TiMemory [23] instrumentation framework.

3.4 Adiak: A Library for Recording Program Metadata

Ubiquitous performance analysis lets users compare performance results from
many different application runs. To make meaningful analyses, we need descrip-
tive metadata to capture the provenance of each dataset: for example, it makes
little sense to compare the performance of a 1-dimensional test problem against
a 3-dimensional multi-physics problem. Metadata helps the user group or filter
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out datasets when comparing runs. Useful metadata can include environment in-
formation such as the machine the program was running on, the launch date and
time, or the user running the program; program information such as program
version, build date, and compiler vendor and options; and job configuration such
as MPI job size and number of threads. In addition, developers often run perfor-
mance studies based on application-specific input and configuration parameters,
such as problem description, problem size or enabled features. We need a cus-
tomizable solution that can capture these application-specific parameters. We
also want to collect this data automatically and avoid manual data input for
each run. Therefore, similar to the region annotations for profiling, we record
metadata programmatically through an API. We created the Adiak [1] library
for this purpose. Adiak records user-defined metadata in the form of key/value
pairs. It also includes functionality to fetch common metadata like MPI job size
or launch date automatically. The recorded metadata values are stored in the
Caliper performance profile datasets.

3.5 SPOT: A Web Interface for Ubiquitous Performance Analysis

Web-based visualization tools are extremely convenient as they do not require
the installation of specialized visualization tools. SPOT, our data visualization
frontend, is a custom web interface for ubiquitous performance analysis. Com-
pared to traditional profiling tool GUIs, which deep-dive on the performance of
individual runs, SPOT analyzes and tracks the performance of many runs over
an application’s lifetime. At LLNL, SPOT is hosted locally by Livermore Com-
puting (LC) and is available to every LC account holder via LC’s web portal.
We also provide a containerized version [6] that can be deployed at other sites.
SPOT reads data directly from a user-provided directory on a shared filesystem
or a database link through a background data-fetching process, which runs as
the logged-in user. Thus, filesystem or SQL database permissions ensure that
users can only access performance data for which they have appropriate per-
missions. SPOT provides tools to filter, visualize, and compare performance
data, with novel visualizations specifically targeting the analysis of large collec-
tions of performance data. Users can create plots to display any of the collected
metadata values and performance metrics. They can also open SPOT datasets
in Jupyter [5] notebooks directly from the SPOT web page to create custom
analysis scripts and visualizations. We discuss specific visualization examples in
Section 4.4.

3.6 Ubiquitous Data Collection

Caliper provides the spot profiling configuration that produces datasets for anal-
ysis with the SPOT web interface. As a baseline, these datasets contain a sum-
mary time profile with the total, minimum, maximum, and average time spent
in each annotated region across MPI ranks, as well as all recorded metadata for
a program run. The datasets are usually quite small, in the order of kilobytes.
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For comparisons studies in SPOT, all recorded datasets are copied to a shared
directory or a SQL database. Depending on the use case, developers and users
can manage these datasets manually, or set up automated workflows for long-
term, continuous data collection. They can define and implement data retention
or purge policies as needed, otherwise storage requirements grow linearly as
datasets are added. The SPOT web frontend has options for limiting the amount
of data to be imported, e.g. only the last N days, to maintain scalability.

4 Example: LULESH

In this section, we describe the practical implementation of ubiquitous perfor-
mance analysis in an HPC code using the Lulesh proxy application [3,20] as an
example. As a baseline, we use Lulesh 2.0 with MPI and OpenMP paralleliza-
tion. We show how the code is prepared for profiling and illustrate the analysis
capabilities of our web interface.

4.1 Region Instrumentation with Caliper

Lulesh contains 39 computational functions and 5 communication functions in
C++, as well as a number of data initialization and utility functions. In Lulesh,
function names and the logical subdivision of code semantics along function
boundaries provide a good basis for meaningful performance analysis. We in-
strumented 17 of its top-level computational functions, the 5 communication
functions, and the main loop with Caliper annotation macros. To keep clutter
and measurement overhead low, utility functions and very small functions were
not instrumented. The CALI CXX MARK FUNCTION macro in LagrangeLeapFrog

in Listing 1.1 demonstrates function annotations in Lulesh. Here, Caliper creates
a function region from the location of the macro to the function exit, with the
name taken from the compiler-provided FUNCTION macro.

4.2 Metadata Collection with Adiak

In addition to the function instrumentation, we added Adiak calls in Lulesh to
collect run metadata. As shown in Listing 1.1, Adiak provides two types of calls:
The first form accesses built-in functionality to collect common information, such
as the adiak::user() call to record the user name, while the second, generic
adiak::value() form lets developers provide custom metadata in the form of
key-value pairs. Adiak can record a variety of datatypes, including integer and
floating-point scalars, strings, tuples, and composite types such as lists.

In Lulesh, we record basic environment information like the user name, ma-
chine, launchdate, and MPI job size. In addition, we record the Lulesh problem
settings, such as the maximum number of iterations, problem size, number of
regions, region costs, and region balance. We also record the user-defined “figure
of merit” performance number computed by Lulesh at the end of the run. Note
that Listing 1.1 shows only a subset of the Adiak calls.
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Listing 1.1. Configuring Caliper and recording metadata in Lulesh

void LagrangeLeapFrog(Domain& domain) {

CALI_CXX_MARK_FUNCTION;

// (...)

}

int main(int argc , char* argv []) {

// (...)

cali:: ConfigManager mgr(opts.caliper_config);

mgr.start();

adiak::user();

adiak:: launchdate ();

adiak:: value("iterations", opts.its);

adiak:: value("problem_size", opts.nx);

// (...)

CALI_MARK_FUNCTION_BEGIN;

// (...)

CALI_MARK_FUNCTION_END;

mgr.flush();

}

4.3 Integrating the Caliper ConfigManager API

To enable and control performance measurements in Lulesh, we use the Caliper
ConfigManager API. Listing 1.1 shows the relevant steps: First, we create a
ConfigManager object and initialize it with a user-provided configuration string.
The ConfigManager class parses the configuration string and sets up Caliper’s
performance measurement and data recording components. Next, we invoke the
ConfigManager’s start() method to begin profiling based on the given perfor-
mance measurement configuration. At the end of the program, we invoke the
flush() method to stop profiling and write out the recorded performance data.

In Lulesh, users provide the Caliper configuration string via a command-
line parameter. As an example, we can enable the runtime-report experiment on
the command line to print out an aggregate time profile of the user-annotated
regions at the end of the execution. With the profile.mpi option, the experiment
also wraps and measures all MPI calls:

$ ./lulesh2.0 -P "runtime-report(profile.mpi)"

In our experience, controlling performance profiling through application-
specific means like configuration files or a command line parameter has proven
to be very convenient for users, and we encourage developers to provide this
capability when adopting Caliper.
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4.4 Data Analysis and Visualization in SPOT

For demonstration purposes, we recorded 1,149 profile datasets with Lulesh using
different program configurations. For analysis, users load the SPOT website and
point it to a directory or SQL database with the recorded datasets. SPOT then
populates the landing page, where users can start their analysis.

Landing page. The SPOT landing page serves as entry point for performance
studies, and lets users filter runs of interest out of potentially thousands of
profiling datasets. The landing page is populated with charts that show summary
histograms for selected metadata attributes, for example the runs performed by a
particular user or runs that invoked a particular physics package. The histogram
charts on the landing page are interactive and connected through a crossfilter
system [2]. Users can select subsets of data in one or more charts, causing the
remaining charts to adapt to include only the selected datasets. This is useful to
select specific subsets and to discover correlations between metadata variables.

For our Lulesh example, Figure 1 shows the distribution of runs with a given
compiler, “figure of merit” (FOM), input problem size, and number of threads in
the 1,149 Lulesh runs. In Figure 2, the user applied a crossfilter to select the runs
that had the highest figure of merit, which shows that those runs predominately
were done with binaries produced by the Intel compiler, input problem size 30,
and one thread. The original 1,149 datasets were reduced to 24 entries by the
“figure of merit” selection.

Comparison page. The SPOT comparison page is a powerful tool for compar-
ing performance profiles from multiple application runs. Users can select datasets
on the landing page using the crossfilter, and open the comparison page to show
the performance for all selected runs in a stacked line graph. Users can also group
data using additional metadata flags, for example to compare performance be-
tween different compilers or MPI versions. A typical comparison configuration
for tracking nightly test performance might show a chart per group of tests
(where the tests in a group could be defined by metadata values), the test date
on the x-axis, and the sum of walltime performance for every test in the group
on the y-axis.

Figure 3 shows the runtime in different instrumented code regions for a set of
runs in our Lulesh datasets, ordered by the launchdate of the job and grouped
by compiler. The colors in the chart correspond to the different instrumented
code regions. Users can select the regions shown in the chart in the region hier-
archy overview in the lower left. The bottom part of the comparison page shows
detailed information for the dataset selected in the chart with the black bar.

Users can group and order datasets using any of the recorded metadata at-
tributes, providing a great deal of flexibility to conduct a wide variety of analyses.
Figure 4 shows an interesting example. Here, we ran additional experiments with
Lulesh with 343 MPI processes, using three different MPI implementations (mva-
pich2 v2.3, OpenMPI 2, and OpenMPI 4) and different problem sizes, with all
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Fig. 1. The SPOT landing page featuring four histogram charts for a set of Lulesh
runs. Charts show the numbers of runs with certain metadata values; here: compiler,
figure-of-merit (FOM), input problem size, and number of threads.

Fig. 2. The landing page charts from Figure 1 with a crossfilter applied. Selecting runs
with highest FOM (top right) shows relationship to compiler (top left), problem size
(bottom left), and threads (bottom right).
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Fig. 3. The SPOT comparison page, here showing runtime (y-axis) for a set of Lulesh
runs, ordered by job launch date (x-axis) and grouped by compiler (top and bottom
charts). Colors correspond to instrumented code regions. The bottom pane shows de-
tails for the highlighted dataset (marked by the black bar in the upper chart).

Fig. 4. Users can order datasets in the SPOT comparison page by any recorded meta-
data attribute. Here, we compare the average total time in MPI Allreduce per rank
(y-axis, seconds) in Lulesh in different MPI implementations (x-axis), for two different
input problem sizes (30 and 50; left and right charts).
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Fig. 5. A detailed performance profile view for a single Lulesh dataset in SPOT showing
code hierarchy plots for recorded performance metrics (here: average time in seconds
per MPI rank) within instrumented code regions.

other configuration parameters fixed. In the chart, we show average total runtime
spent in MPI Allreduce, ordered by MPI version on the x-axis, and grouped by
Lulesh problem size. We see that in our tests, OpenMPI outperformed mvapich,
especially at large problem sizes.

Detail views. From the landing page, users can open detail views for individual
datasets, such as a flame graph visualization showing the time spent in each
annotated regions. Figure 5 shows a flame graph visualization for the time spent
in the instrumented code regions for a single Lulesh dataset.

5 Overhead Evaluation

It is critical that measurement activities do not negatively impact program per-
formance. We quantify the measurement overheads in our Lulesh example when
recording SPOT data. We compare four different configurations: an uninstru-
mented executable (“No instrumentation”), the Caliper-instrumented version
with no measurements enabled (“No measurement”), recording a basic region
time profile for SPOT (“Spot”), and recording region profile for SPOT with
MPI function profiling enabled (“Spot+MPI”). Our experiments ran on Quartz,
a 2,634-node cluster system at LLNL with Intel OmniPath interconnect, dual
18-core Intel Xeon E5-2695 2.1GHz processors, and 128 gigabytes of memory
per node. We use Caliper v2.3.0 and Adiak v0.1.1. Both Lulesh and Caliper
were built with gcc 4.9.3. Caliper was compiled with optimization level -O2,
Lulesh with -O3. We ran this experiment on a single allocated node using 8 MPI
processes and 4 OpenMP threads per process using the Lulesh default input
problem.

We ran each configuration 5 times and report the minimum, maximum, and
average runtime with each configuration. Figure 6 shows the results. The runtime
of the uninstrumented Lulesh executable was between 32.8 and 33 seconds, with
an average of 32.9 seconds. The average runtime of the instrumented program is
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Fig. 6. Caliper instrumentation and measurement overhead in Lulesh with different
embedded performance measurement configurations enabled. The bars show the aver-
age wall-clock runtime and runtime variation over 5 runs for each configuration.

virtually unchanged with 33.0 seconds. When recording basic region time pro-
files for SPOT, we see a 1.3% runtime overhead in the instrumented Lulesh. The
overhead increases slightly to 2% with MPI profiling turned on. Measurement
overhead depends heavily on the instrumentation granularity. For our typical
ubiquitous performance analysis use cases, we only instrument high-level pro-
gram regions; therefore, measurement overheads generally stay low in production
use. In absolute terms, results from the Caliper-provided cali-annotation-perftest
benchmark program on our test machine show average costs for a single Caliper
instrumentation event (i.e, enter or exit of an instrumented region) of 0.65 mi-
croseconds in the Spot runtime profiling configuration, and 0.12 microseconds
with no active profiling configuration.

The data collection step producing the SPOT output file uses Caliper’s
flexible aggregation mechanism, which offers O(logN) scalability over N MPI
ranks [10]. Otherwise, Caliper performs no inter-process communication during
program execution. Because we record only aggregate information, the amount
of data stored on each process during execution remains constant, and only
depends on the number of instrumented code regions. The resulting profiling
datasets for individual program runs are quite small: in our Lulesh example, the
dataset size is 10KiB per run for the basic region time profile and 14KiB for the
time profile with MPI functions.

6 Case Study: Marbl

This section discusses our experience integrating ubiquitous performance analy-
sis into Marbl, a large multi-physics production code that simulates high energy
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density and focused physics experiments driven by high-explosive magnetic or
laser based energy sources.

Integrating Caliper and Adiak into Marbl was relatively easy and took ap-
proximately two man-weeks of developer effort, including coding, testing, re-
views, and integration. The details of the integration effort were largely similar
to the Lulesh example in Section 4. One notable addition is that Marbl also
exposes its annotations to users in the form of lua functions that can be added
at runtime:

– annotation begin(name)

– annotation end(name)

– annotation metadata(key,value,category).

This allows users (and CI suites) to easily tag and compare the performance for
different configurations of a problem.

Unlike many other large LLNL applications, Marbl did not already have built-
in timers where we could hook in Caliper annotations. We used HPCToolkit [7]
to quickly identify approximately a dozen interesting regions of code that we then
annotated, which was enough for Marbl’s developers to start using SPOT. The
Marbl development team then iteratively refined and added code annotations as
they used the tool. A Caliper experiment that counted annotation executions
was useful for identifying annotations that were too low-level, such as when
an annotation was added in an inner loop and briefly caused a performance
regression (seen as a spike from December 20-30 in Figure 7).

A motivating factor for integrating SPOT into Marbl was to track perfor-
mance regressions in nightly tests. Marbl’s nightly continuous integration (CI)
test scripts were modified to drop a Caliper performance file into a persistent di-
rectory, which the SPOT web interface uses as a data source. This required only
minor changes to the existing CI scripts, specifically, enabling the spot Config-
Manager configuration for a subset of test instances designated for performance
testing. The nightly tests track performance on CPU and GPU architectures
over several different configurations of around ten benchmark problems. Each of
the ˜80 test runs generates a ˜30KiB dataset. Since there were too many tests for
a human to look at each test’s individual daily performance, we grouped tests by
their set of utilized physics packages using Adiak-collected metadata. SPOT’s
comparison view was set to show each test group’s (determined by tests that
utilized the same physics packages) aggregate performance over a time period.
If a test group shows a performance anomaly, a Marbl developer can then use
SPOT to view the performance of individual tests in the group, or the aggregate
performance of certain code regions in a test or test group. The SPOT configura-
tion that shows any particular view is reflected in the URL, so Marbl developers
can bookmark the test results page or send a particular view to a colleague.

The Marbl development team had other uses for SPOT. During development
of a new algorithm they wanted to measure the scaling performance and memory
overhead of a region of code. They ran before-and-after versions of the code at
various scales and collected the automatically-generated performance files into a
directory. By pointing SPOT at that directory and selecting a few options in the
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Fig. 7. SPOT performance tracking for Marbl’s Triple-Point-3D problem on a 4 GPU
compute node over the course of several months during its ongoing GPU port. Ubiq-
uitous performance analysis made it easy to detect a performance regression (in late
December 2019) and can seamlessly handle changing annotation labels, such as when
the “DGFieldRemap::Remap” annotation (pink) was renamed to “Remap” (brown)
around March 2020.

comparison view, they were able to easily create before-and-after scaling graphs
of that code region. This effort generated a request for more complicated graph
types, which eventually led to a SPOT feature to automatically export perfor-
mance data for sets of runs into a Jupyter notebook, where Python’s powerful
data analytics tools and graphing infrastructure can be used to slice data into
highly-customizable visualizations and graphs (see Sections 3.5).

Ubiquitous performance analysis has also been instrumental in helping the
Marbl development team track and understand the code’s performance as they
port the codebase to new architectures, an ongoing effort which began in Fall
2019. Figure 7 shows the performance of a 3D Triple-Point hydrodynamics prob-
lem on a single IBM Power9 node with 4 NVIDIA Volta GPUs over about a six
month period. Automatic performance capture has also helped the team ensure
that there have not been performance regressions on other platforms during the
porting process. Similarly, ubiquitous performance analysis made it easy to set
up Node-to-Node performance scaling studies in Marbl to compare the code’s
performance across several HPC architectures including Intel- and ARM-based
CPU clusters as well as a GPU-based cluster [8]. The integrated Caliper an-
notations enabled comparisons across different phases of the simulation, custom
metadata annotations enabled filtering by scaling study type (e.g. strong-scaling,
weak-scaling and throughput scaling) and the Jupyter integration streamlined
the process of analyzing and charting the data.

7 Conclusion

Ubiquitous performance analysis seamlessly integrates performance profiling into
HPC software development workflows. It facilitates continuous recording, anal-



Ubiquitous Performance Analysis 17

ysis, and comparison of program performance data for long-lived HPC codes.
We have created and deployed new software infrastructure to accomplish this
goal: the ConfigManager API in Caliper to embed programmatically controlled,
always-on profiling capabilities into applications; the Adiak metadata collection
library; and the SPOT web interface with novel visualization and analysis tools
to explore large collections of performance datasets. Our entire ubiquitous perfor-
mance analysis stack is developed and released as open source packages [1,6,11].
The Marbl case study shows how ubiquitous performance analysis enables au-
tomated performance regression testing and custom cross-platform studies, and
greatly simplifies collaborative performance optimization work in large develop-
ment teams.

At LLNL, we continue to integrate Caliper and SPOT into additional in-
house production codes. We also continue to develop new turnkey-style mea-
surement options in the ConfigManager interface with matching visualization
tools in SPOT for specific analyses. In that regard, we see the ubiquitous perfor-
mance analysis software stack as an ideal platform to deploy new performance
analysis methodologies. Finally, we recognize that a large amount of long-term
performance data can be obtained through automatic data collection, and we ex-
pect that this data will enable a wealth of new automated performance analysis
approaches based on data mining and machine learning.
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11. Böhme, D., Gamblin, T., Beckingsale, D., Bremer, P.T., Giménez, A., LeGendre,
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